Scale-dependency of sediment yield from badland areas in Mediterranean environments

2011 ◽  
Vol 35 (3) ◽  
pp. 297-332 ◽  
Author(s):  
E. Nadal-Romero ◽  
J.F. Martínez-Murillo ◽  
M. Vanmaercke ◽  
J. Poesen

While much attention has been given to erosion processes in badlands, an integrated analysis of sediment production and export rates in badland areas at various spatial scales is currently lacking. This study reviews area-specific sediment yield (SY) from badlands in the Mediterranean measured at different spatial scales, using various measuring techniques, in order to investigate the relationship between size of study area (A) and SY. A database representing 16 571 plot-year and catchment-year data on SY at 87 Mediterranean study sites was compiled. The most commonly reported lithologies associated with badlands are marls, clay rocks and mudstones, and to a lesser extent shales. A high variability of SY from badlands in the Mediterranean region is observed. The relation between A and SY for Mediterranean environments with badlands is significantly different from that reported for Mediterranean environments without badlands. A complex A-SY relationship is identified: for areas < 10 ha, SY is very high (mean SY=475 t ha—1 y—1), whereas for areas > 10 ha, SY decreases non-linearly (power law) with increasing A (mean SY=75 t ha—1 y— 1 and drops from 164.5 t ha—1 y— 1 for 10 ha <A<200 ha to 9.3 t ha— 1 y—1 for A>100 000 ha). This difference is explained by several factors. For A < 10 ha there is little or no sediment storage within badland areas, while for A > 10 ha progressively more sediment can be trapped in different sinks. Further, for A > 10 ha, area-specific erosion rates do not increase (or even decrease) due to decreasing average hillslope gradients and a decreasing fraction of erosion-prone (bare/badland) area. No significant relationships between SY, lithology, and mean air temperature nor mean annual precipitation were observed.

2021 ◽  
Author(s):  
Dante Föllmi ◽  
Jantiene Baartman ◽  
João Pedro Nunes ◽  
Akli Benali

&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Wildfires have become an increasing threat for Mediterranean ecosystems, due to increasing climate change induced wildfire activity and changing land management practices. Apart from the initial risk, fire can alter the soil in various ways depending on different fire severities and thus post-fire erosion processes are an important component in assessing wildfires&amp;#8217; negative effects. Recent post-fire erosion (modelling) studies often focus on a short time window and lack the attention for sediment dynamics at larger spatial scales. Yet, these large spatial and temporal scales are fundamental for a better understanding of catchment sediment dynamics and long-term destructive effects of multiple fires on post-fire erosion processes. In this study the landscape evolution model LAPSUS was used to simulate erosion and deposition in the 404 km&lt;sup&gt;2&lt;/sup&gt; &amp;#193;gueda catchment in northern-central Portugal over a 41 year (1979-2020) timespan. To include variation in fire severity and its impact on the soil four burnt severity classes, represented by the difference Normalized Burn Ratio (dNBR), were parameterized. Although model calibration was difficult due to lack of spatial and temporal measured data, the results show that average post-fire net erosion rates were significantly higher in the wildfire scenarios (5.95 ton ha&lt;sup&gt;-1&lt;/sup&gt; yr&lt;sup&gt;-1&lt;/sup&gt;) compared to those of a non-wildfire scenario (0.58 ton ha&lt;sup&gt;-1&lt;/sup&gt; yr&lt;sup&gt;-1&lt;/sup&gt;). Furthermore, erosion values increased with a higher level of burnt severity and multiple fires increased the overall sediment build-up in the catchment, fostering an increase in background sediment yield. Simulated erosion patterns showed great spatial variability with large deposition and erosion rates inside streams. Due to this variability, it was difficult to identify land uses that were most sensitive for post-fire erosion, because some land-uses were located in more erosion-sensitive areas (e.g. streams, gullies) or were more affected by high burnt severity levels than others. Despite these limitations, LAPSUS performed well on addressing spatial sediment processes and has the ability to contribute to pre-fire management strategies. For instance, the percentage soil loss map (i.e. comparison of erosion and soil depth maps) could identify locations at risk.&lt;/p&gt;


Author(s):  
John Wainwright

Hillslopes are the dominant landform features of the Earth’s surface. They make up the interface between the atmosphere and Earth systems, providing a substrate that supports life and thus the basis for human activities within the Mediterranean. Their location at this interface means that hillslopes evolve through a complex interaction of different processes, operating at a range of different time and spatial scales. At longer timescales, processes of weathering convert rock and other parent materials into soils. Soils allow the growth of vegetation and thus further feedbacks between atmospheric and surface processes; in some cases these feedbacks can be seen to provide relative stability, while in others the system can become more fragile (Chapter 20). The latter case often arises as a result of erosion processes of various types. Water erosion and mass movements are a significant element of Mediterranean landscape evolution, occurring in parallel with (in response to, and affecting) tectonic processes that have moulded the configuration of the Earth’s crust (see Chapter 1), producing the unique combination of environmental characteristics of the region. Since the Late Pleistocene, depending on location, human activity has led to an acceleration of many of these processes, with important consequences for the basic ‘life-support system’ of the region and for global environmental cycles. The in situ modification of near-surface materials is typically considered to take place along a continuum relating to the dominance of mechanical or chemical processes (e.g. Birkeland 1999). The simplest control may be considered to be climatic, with mechanical breakdown of particles dominating in cold, dry conditions, and chemical processes dominating in warm, wet conditions. Comparing this model to the present day climate of the Mediterranean suggests, as with other processes, something of a north–south divide in terms of the dominant weathering process. The northern part of the basin (together with the Levant and the north-facing uplands of the Maghreb) would seem to be dominated by moderate chemical weathering; exceptions being the arid areas of south-east Spain, southern Sicily, eastern Cyprus, and parts of the Anatolian plateau as well as areas where low average temperatures would also reduce rates, such as in the Alps and parts of Slovenia and Croatia.


2012 ◽  
Vol 16 (2) ◽  
pp. 517-528 ◽  
Author(s):  
E. Ceaglio ◽  
K. Meusburger ◽  
M. Freppaz ◽  
E. Zanini ◽  
C. Alewell

Abstract. Mountain areas are widely affected by soil erosion, which is generally linked to runoff processes occurring in the growing season and snowmelt period. Also processes like snow gliding and full-depth snow avalanches may be important factors that can enhance soil erosion, however the role and importance of snow movements as agents of soil redistribution are not well understood yet. The aim of this study was to provide information on the relative importance of snow related processes in comparison to runoff processes. In the study area, which is an avalanche path characterized by intense snow movements, soil redistribution rates were quantified with two methods: (i) by field measurements of sediment yield in an avalanche deposition area during 2009 and 2010 winter seasons; (ii) by caesium-137 method, which supplies the cumulative net soil loss/gain since 1986, including all the soil erosion processes. The snow related soil accumulation estimated with data from the deposit area (27.5 Mg ha−1 event−1 and 161.0 Mg ha−1 event−1) was not only higher than the yearly sediment amounts, reported in literature, due to runoff processes, but it was even more intense than the yearly total deposition rate assessed with 137Cs (12.6 Mg ha−1 yr−1). The snow related soil erosion rates estimated from the sediment yield at the avalanche deposit area (3.7 Mg ha−1 and 20.8 Mg ha−1) were greater than the erosion rates reported in literature and related to runoff processes; they were comparable to the yearly total erosion rates assessed with the 137Cs method (13.4 Mg ha−1 yr−1 and 8.8 Mg ha−1 yr−1). The 137Cs method also showed that, where the ground avalanche does not release, the erosion and deposition of soil particles from the upper part of the basin was considerable and likely related to snow gliding. Even though the comparison of both the approaches is linked to high methodological uncertainties, mainly due to the different spatial and temporal scales considered, we still can deduce, from the similarity of the erosion rates, that soil redistribution in this catchment is driven by snow movement, with a greater impact in comparison to the runoff processes occurring in the snow-free season. Nonetheless, the study highlights that soil erosion processes due to the snow movements should be considered in the assessment of soil vulnerability in mountain areas, as they significantly determine the pattern of soil redistribution.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 952 ◽  
Author(s):  
Devraj Chalise ◽  
Lalit Kumar ◽  
Velibor Spalevic ◽  
Goran Skataric

Soil erosion is a severe environmental problem worldwide as it washes away the fertile topsoil and reduces agricultural production. Nepal, being a hilly country, has significant erosion disputes as well. It is important to cognise the soil erosion processes occurring in a river basin to manage the erosion severity and plan for better soil conservation programs. This paper seeks to calculate the sediment yield and maximum outflow from the Sarada river basin located in the western hills of Nepal using the computer-graphic Intensity of Erosion and Outflow (IntErO) model. Asymmetry coefficient of 0.63 was calculated, which suggests a possibility of large floods to come in the river basin in the future whereas the maximum outflow from the river basin was 1918 m³ s−1. An erosion coefficient value of 0.40 was obtained, which indicates surface erosion of medium strength prevails in the river basin. Similarly, the gross soil loss rate of 10.74 Mg ha−1 year−1 was obtained with the IntErO modeling which compares well with the soil loss from the erosion plot measurements. The IntErO model was used for the very first time to calculate soil erosion rates in the Nepalese hills and has a very good opportunity to be applied in similar river basins.


2011 ◽  
Vol 8 (5) ◽  
pp. 8533-8563
Author(s):  
E. Ceaglio ◽  
K. Meusburger ◽  
M. Freppaz ◽  
E. Zanini ◽  
C. Alewell

Abstract. Mountain areas are widely affected by soil erosion, which is commonly linked to runoff processes. Also winter processes, like snow gliding and full-depth avalanches, may be important factors that can enhance soil erosion, however the role and importance of snow movements as agents of soil redistribution are not well understood yet. The aim of this study is to provide information on the relative importance of snow related soil erosion processes in comparison to runoff processes. In the study area, which is an avalanche path characterized by intense snow movements and soil erosion, soil redistribution rates were quantified with two methods: (i) by field measurements of sediment yield in an avalanche deposition area during 2009 and 2010 winter seasons; (ii) by Caesium-137 method, which supplies the cumulative net soil loss/gain since 1986, including winter and summer soil erosion processes. The soil erosion rates estimated from the sediment yield at the avalanche deposit area (3.2 and 20.8 Mg ha−1 event−1) is comparable to the yearly erosion rates (averaged since 1986) estimated with the Cs-137 method (8.8–13.4 Mg ha−1 yr−1). The soil accumulation rate estimated with data from the avalanche deposition area (28.2 and 160.7 Mg ha−1 event−1) is even more intense than the yearly deposition rates estimated with Cs-137 (8.9–12.6 Mg ha−1 yr−1). This might be due to the high relevance of the two investigated avalanche events and/or to the discrepancy between the long-term (since 1986) signal of the Cs-137 method compared to rates of 2009 and 2010. Even though the comparability is limited by the different time scale of the applied methods, both methods yielded similar magnitudes of soil redistribution rates indicating that soil erosion due to snow movements is the main driving force of soil redistribution in the area. Therefore winter processes have to be taken into account when assessing soil erosion as they significantly contribute to soil redistribution in mountainous areas.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 931
Author(s):  
Oum Kelthoum Mamadou Djigo ◽  
Mohamed Salem Ould Ahmedou Salem ◽  
Sileye Mamadou Diallo ◽  
Mohamed Abdallahi Bollahi ◽  
Boushab Mohamed Boushab ◽  
...  

Plasmodium vivax malaria is endemic in Mauritania. Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency may develop acute hemolytic anemia when exposed to 8-aminoquinoline antimalarial drugs, which are indispensable for a complete cure. The prevalence of G6PD allelic variants was assessed in different ethno-linguistic groups present in Mauritania. A total of 996 blood samples (447 males and 549 females; 499 white Moors and 497 individuals of black African ancestry) were collected from febrile patients in 6 different study sites: Aleg, Atar, Kiffa, Kobeni, Nouakchott, and Rosso. The presence of the African-type G6PD A- (G202A, A376G, A542T, G680T, and T968C mutations) and the Mediterranean-type G6PD B- (C563T) variants was assessed by PCR followed by restriction fragment length polymorphism and/or DNA sequencing. The prevalence of African-type G6PD A- genotype was 3.6% (36/996), with 6.3% (28/447) of hemizygote (A-) males and 1.5% (8/549) of homozygous (A-A-) females. Forty of 549 (7.3%) women were heterozygous (AA-). The following genotypes were observed among hemizygous men and/or homozygous women: A376G/G202A (22/996; 2.2%), A376G/T968C Betica-Selma (12/996; 1.2%), and A376G/A542T Santamaria (2/996; 0.2%). The Mediterranean-type G6PD B- genotype was not observed. The prevalence rates of G6PD A- genotype in male (10/243; 4.1%) and heterozygous female (6/256; 2.3%) white Moors were lower (p < 0.05) than those of males (18/204; 8.8%) and heterozygous females (34/293; 11.6%) of black African ancestry. There were only a few homozygous women among both white Moors (3/256; 1.2%) and those of black African ancestry (5/293; 1.7%). The prevalence of G6PD deficiency in Mauritania was comparable to that of neighboring countries in the Maghreb. Because of the purportedly close ethnic ties between the Mauritanian white Moors and the peoples in the Maghreb, further investigations on the possible existence of the Mediterranean-type allele are required. Moreover, a surveillance system of G6PD phenotype and/or genotype screening is warranted to establish and monitor a population-based prevalence of G6PD deficiency.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolette Driscoll ◽  
Richard E. Rosch ◽  
Brendan B. Murphy ◽  
Arian Ashourvan ◽  
Ramya Vishnubhotla ◽  
...  

AbstractNeurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal resolution (e.g. calcium imaging) or record from discrete regions at high temporal resolution (e.g. electrophysiology). This limitation hampers our ability to understand and intervene in aberrations of network dynamics. Here we present a technique to map the onset and spatiotemporal spread of acute epileptic seizures in vivo by simultaneously recording high bandwidth microelectrocorticography and calcium fluorescence using transparent graphene microelectrode arrays. We integrate dynamic data features from both modalities using non-negative matrix factorization to identify sequential spatiotemporal patterns of seizure onset and evolution, revealing how the temporal progression of ictal electrophysiology is linked to the spatial evolution of the recruited seizure core. This integrated analysis of multimodal data reveals otherwise hidden state transitions in the spatial and temporal progression of acute seizures. The techniques demonstrated here may enable future targeted therapeutic interventions and novel spatially embedded models of local circuit dynamics during seizure onset and evolution.


2018 ◽  
Author(s):  
Gonzalo Duró ◽  
Alessandra Crosato ◽  
Maarten G. Kleinhans ◽  
Wim S. J. Uijttewaal

Abstract. Diverse methods are currently available to measure river bank erosion at broad-ranging temporal and spatial scales. Yet, no technique provides low-cost and high-resolution to survey small-scale bank processes along a river reach. We investigate the capabilities of Structure-from-Motion photogrammetry applied with imagery from an Unmanned Aerial Vehicle (UAV) to describe the evolution of riverbank profiles in middle-size rivers. The bank erosion cycle is used as a reference to assess the applicability of different techniques. We surveyed 1.2 km of a restored bank of the Meuse River eight times within a year, combining different photograph perspectives and overlaps to identify an efficient UAV flight to monitor banks. The accuracy of the Digital Surface Models (DSMs) was evaluated compared with RTK GPS points and an Airborne Laser Scanning (ALS) of the whole reach. An oblique perspective with eight photo overlaps was sufficient to achieve the highest relative precision to observation distance of ~1:1400, with 10 cm error range. A complementary nadiral view increased coverage behind bank toe vegetation. The DSM and ALS had comparable accuracies except on banks, where the latter overestimates elevations. Sequential DSMs captured signatures of the erosion cycle such as mass failures, slump-block deposition, and bank undermining. Although this technique requires low water levels and banks without dense vegetation, it is a low-cost method to survey reach-scale riverbanks in sufficient resolution to quantify bank retreat and identify morphological features of the bank failure and erosion processes.


Sign in / Sign up

Export Citation Format

Share Document