An integrated experimental and finite element approach for wrinkling limit prediction of Inconel 718 alloy at elevated temperatures

Author(s):  
Gauri Mahalle ◽  
Nitin Kotkunde ◽  
Amit Kumar Gupta ◽  
Swadesh Kumar Singh

Wrinkling is generally induced because of metal instability and considered as an undesirable defect in sheet metal forming processes. Wrinkling leads to severe influence on functional requirements and aesthetic appeal of final component. Thus, the present research is mainly dedicated on the experimental and numerical analysis for wrinkling behavior prediction of Inconel 718 alloy at elevated temperature conditions. Initially, Yoshida buckling tests (YBT) have been conducted to investigate wrinkling tendencies of Inconel 718 alloy from room temperature (RT) to 600°C by an interval of 200°C. Subsequently, Finite Element (FE) analysis of YBT has been performed to analyze post buckling behavior. Critical strain values at onset of wrinkling are determined and strain based wrinkling limit curves (ε-WLCs) are plotted at different temperatures. In-plane principal strains are transferred to effective plastic strain (EPS) versus triaxiality (η) space to differentiate the transformation between safe and wrinkling instability. Finally, complete forming behavior of alloy is represented by means of fracture, forming, and wrinkling limit curves. The gap between forming and wrinkling limit curves at elevated temperature is ∼1.5 times higher than that at room temperature.

Friction ◽  
2020 ◽  
Author(s):  
Liuyang Bai ◽  
Shanhong Wan ◽  
Gewen Yi ◽  
Yu Shan ◽  
Sang The Pham ◽  
...  

AbstractA comparative evaluation of the friction and wear behaviors of 40CrNiMoA steel and Inconel 718 alloy sliding against Si3N4 counterparts was conducted over a large temperature range from room temperature (RT) to 800 °C. The temperature-dependent tribological properties associated with the resulting chemical mitigation and structural adaptation of the solid sliding surface were clarified by surface/interface characterizations. The results revealed desirable performance in reducing friction and wear at elevated temperatures, which was associated with the resulting oxide composite film’s adaptive lubricating capability, whereas severe abrasive wear occurred at room/ambient temperatures. The oxidative-abrasive differentials for the two alloys were further discussed by considering the combined effect of temperature and stressed-shearing conditions.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 876 ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Sohini Chowdhury ◽  
Yadaiah Nirsanametla ◽  
Anil Kumar Deepati ◽  
Chander Prakash ◽  
...  

Investigation of the selective laser melting (SLM) process, using finite element method, to understand the influences of laser power and scanning speed on the heat flow and melt-pool dimensions is a challenging task. Most of the existing studies are focused on the study of thin layer thickness and comparative study of same materials under different manufacturing conditions. The present work is focused on comparative analysis of thermal cycles and complex melt-pool behavior of a high layer thickness multi-layer laser additive manufacturing (LAM) of pure Titanium (Ti) and Inconel 718. A transient 3D finite-element model is developed to perform a quantitative comparative study on two materials to examine the temperature distribution and disparities in melt-pool behaviours under similar processing conditions. It is observed that the layers are properly melted and sintered for the considered process parameters. The temperature and melt-pool increases as laser power move in the same layer and when new layers are added. The same is observed when the laser power increases, and opposite is observed for increasing scanning speed while keeping other parameters constant. It is also found that Inconel 718 alloy has a higher maximum temperature than Ti material for the same process parameter and hence higher melt-pool dimensions.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1001
Author(s):  
Zongxian Song ◽  
Wenbin Gao ◽  
Dongpo Wang ◽  
Zhisheng Wu ◽  
Meifang Yan ◽  
...  

This study investigates the very-high-cycle fatigue (VHCF) behavior at elevated temperature (650 °C) of the Inconel 718 alloy fabricated by selective laser melting (SLM). The results are compared with those of the wrought alloy. Large columnar grain with a cellular structure in the grain interior and Laves/δ phases precipitated along the grain boundaries were exhibited in the SLM alloy, while fine equiaxed grains were present in the wrought alloy. The elevated temperature had a minor effect on the fatigue resistance in the regime below 108 cycles for the SLM alloy but significantly reduced the fatigue strength in the VHCF regime above 108 cycles. Both the SLM and wrought specimens exhibited similar fatigue resistance in the fatigue life regime of fewer than 107–108 cycles at elevated temperature, and the surface initiation mechanism was dominant in both alloys. In a VHCF regime above 107–108 cycles at elevated temperature, the wrought material exhibited slightly better fatigue resistance than the SLM alloy. All fatigue cracks are initiated from the internal defects or the microstructure discontinuities. The precipitation of Laves and δ phases is examined after fatigue tests at high temperatures, and the effect of microstructure on the formation and the propagation of the microstructural small cracks is also discussed.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


Author(s):  
Y. Huang ◽  
J. Huang ◽  
J. Cao

Magnesium alloy sheet has received increasing attention in automotive and aerospace industries. It is widely recognized that magnesium sheet has a poor formability at room temperature. While at elevated temperature, its formability can be dramatically improved. Most of work in the field has been working with the magnesium sheet after annealed around 350°C. In this paper, the as-received commercial magnesium sheet (AZ31B-H24) with thickness of 2mm has been experimentally studied without any special heat treatment. Uniaxial tensile tests at room temperature and elevated temperature were first conducted to have a better understanding of the material properties of magnesium sheet (AZ31B-H24). Then, limit dome height (LDH) tests were conducted to capture forming limits of magnesium sheet (AZ31B-H24) at elevated temperatures. An optical method has been introduced to obtain the stress-strain curve at elevated temperatures. Experimental results of the LDH tests were presented.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1033 ◽  
Author(s):  
Roman Aigner ◽  
Christian Garb ◽  
Martin Leitner ◽  
Michael Stoschka ◽  
Florian Grün

This paper contributes to the effect of elevated temperature on the fatigue strength of common aluminum cast alloys EN AC-46200 and EN AC-45500. The examination covers both static as well as cyclic fatigue investigations to study the damage mechanism of the as-cast and post-heat-treated alloys. The investigated fracture surfaces suggest a change in crack origin at elevated temperature of 150 ∘ C. At room temperature, most fatigue tests reveal shrinkage-based micro pores as their crack initiation, whereas large slipping areas occur at elevated temperature. Finally, a modified a r e a -based fatigue strength model for elevated temperatures is proposed. The original a r e a model was developed by Murakami and uses the square root of the projected area of fatigue fracture-initiating defects to correlate with the fatigue strength at room temperature. The adopted concept reveals a proper fit for the fatigue assessment of cast Al-Si materials at elevated temperatures; in detail, the slope of the original model according to Murakami should be decreased at higher temperatures as the spatial extent of casting imperfections becomes less dominant at elevated temperatures. This goes along with the increased long crack threshold at higher operating temperature conditions.


2012 ◽  
Vol 268-270 ◽  
pp. 3-6
Author(s):  
Tao Huang ◽  
Yi Yan Zhang

A numerical investigation was conducted to determine the mechanical behavior of C/SiC composites bolt under room temperature and elevated temperature. The influence of the contact friction coefficient on the stress and displacement was considered in the finite element analysis. The FEA results provided some valuable data for the engineering application of C/SiC composites bolt.


Sign in / Sign up

Export Citation Format

Share Document