Which Contributes to Meniscal Repair, the Synovium or the Meniscus? An In Vivo Rabbit Model Study With the Freeze-Thaw Method

2020 ◽  
Vol 48 (6) ◽  
pp. 1406-1415
Author(s):  
WooYoung Kim ◽  
Tomohiro Onodera ◽  
Eiji Kondo ◽  
Mohamad Alaa Terkawi ◽  
Kentaro Homan ◽  
...  

Background: During meniscal tissue repair, the origin of the reparative cells of damaged meniscal tissue remains unclear. Hypothesis: Comparison of the influence between meniscal and synovial tissues on meniscal repair by the in vivo freeze-thaw method would clarify the origin of meniscal reparative cells. Study Design: Controlled laboratory study. Methods: A total of 48 mature Japanese white rabbits were divided into 4 groups according to the tissue (meniscal or synovial) that received freeze-thaw treatment. The meniscus of each group had a 2 mm–diameter cylindrical defect filled with alginate gel. Macroscopic and histologic evaluations of the reparative tissues were performed at 1, 3, and 6 weeks postoperatively. Additional postoperative measurements included cell density, which was the number of meniscal cells in the cut area per cut area (mm2) of meniscus; cell density ratio, which was the cell density of the sample from each group per the average cell density of the intact meniscus; and cell death rate, which was the number of cells stained by propidium iodide per the number of cells stained by Hoechst 33342 of the meniscal tissue adjacent to the defect. Results: The macroscopic and histologic evaluations of the non–synovium freeze-thaw groups were significantly superior to those of the synovium freeze-thaw groups at 3 and 6 weeks postoperatively. Additionally, the meniscal cell density ratio and cell death rate in the freeze-thaw groups were significantly lower than those in the non–meniscal freeze-thaw groups at 3 and 6 weeks postoperatively. Conclusion: The freeze-thawed meniscus recovered few cells in its tissue even after 6 weeks. However, the defect was filled with fibrochondrocytes and proteoglycan when the synovium was intact. On the basis of these results, it is concluded that synovial cells are the primary contributors to meniscal injury repair. Clinical Relevance: In meniscal tissue engineering, there is no consensus on the best cell source for meniscal repair. Based on this study, increasing the synovial activity and contribution should be the main objective of meniscal tissue engineering. This study can establish the foundation for future meniscal tissue engineering.

Author(s):  
Xavier Barceló ◽  
Stefan Scheurer ◽  
Rajesh Lakshmanan ◽  
Cathal J Moran ◽  
Fiona Freeman ◽  
...  

3D bioprinting has the potential to transform the field of regenerative medicine as it enables the precise spatial patterning of biomaterials, cells and biomolecules to produce engineered tissues. Although numerous tissue engineering strategies have been developed for meniscal repair, the field has yet to realize an implant capable of completely regenerating the tissue. This paper first summarized existing meniscal repair strategies, highlighting the importance of engineering biomimetic implants for successful meniscal regeneration. Next, we reviewed how developments in 3D (bio)printing are accelerating the engineering of functional meniscal tissues and the development of implants targeting damaged or diseased menisci. Some of the opportunities and challenges associated with use of 3D bioprinting for meniscal tissue engineering are identified. Finally, we discussed key emerging research areas with the capacity to enhance the bioprinting of meniscal grafts.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Jihye Baek ◽  
Kwang Il Lee ◽  
Ho Jong Ra ◽  
Martin K Lotz ◽  
Darryl D D'Lima

Aim: To mimic the ultrastructural morphology of the meniscus with nanofiber scaffolds coupled with controlled growth factor delivery to modulate cellular performance for tissue engineering of menisci. Methods: The authors functionalized collagen nanofibers by conjugating heparin to the following growth factors for sustained release: PDGF-BB, TGF-β1 and CTGF. Results: Incorporating growth factors increased human meniscal and synovial cell viability, proliferation and infiltration in vitro, ex vivo and in vivo; upregulated key genes involved in meniscal extracellular matrix synthesis; and enhanced generation of meniscus-like tissue. Conclusion: The authors' results indicate that functionalizing collagen nanofibers can create a cell-favorable micro- and nanoenvironment and can serve as a system for sustained release of bioactive factors.


Author(s):  
Hao Li ◽  
Pinxue Li ◽  
Zhen Yang ◽  
Cangjian Gao ◽  
Liwei Fu ◽  
...  

Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.


1988 ◽  
Vol 74 (5) ◽  
pp. 513-517 ◽  
Author(s):  
Elisabetta Mattei ◽  
Andrea Delpino ◽  
Anna Maria Mileo ◽  
Umberto Ferrini

The induction of thermotolerance was studied in two groups of murine tumors, one able to produce heat shock proteins (HSP) and the other entirely lacking HSP expression in response to various stress inducers. Heat treatments were performed in vitro and the development of thermotolerance was then evaluated in vivo. The data obtained on the of death rate of mice inoculated with tumor cells previously conditioned at 42 °C for 1 h and then challenged at 45 °C for 30 min following 2 h of reincubation at 37 °C, show that the rate of survival is far higher in mice inoculated with HSP negative tumor cells. This indicates that a large number of cells able to increase HSP synthesis following stress escape heat killing, whereas cells unable to express HSP after adequate stimuli are less tolerant against heat challenge.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Weimin Guo ◽  
Wenjing Xu ◽  
Zhenyong Wang ◽  
Mingxue Chen ◽  
Chunxiang Hao ◽  
...  

The meniscus plays a vital role in protecting the articular cartilage of the knee joint. The inner two-thirds of the meniscus are avascular, and injuries to this region often fail to heal without intervention. The use of tissue engineering and regenerative medicine techniques may offer novel and effective approaches to repairing meniscal injuries. Meniscal tissue engineering and regenerative medicine typically use one of two techniques, cell-based or cell-free. While numerous cell-based strategies have been applied to repair and regenerate meniscal defects, these techniques possess certain limitations including cellular contamination and an increased risk of disease transmission. Cell-free strategies attempt to repair and regenerate the injured tissues by recruiting endogenous stem/progenitor cells. Cell-free strategies avoid several of the disadvantages of cell-based techniques and, therefore, may have a wider clinical application. This review first compares cell-based to cell-free techniques. Next, it summarizes potential sources for endogenous stem/progenitor cells. Finally, it discusses important recruitment factors for meniscal repair and regeneration. In conclusion, cell-free techniques, which focus on the recruitment of endogenous stem and progenitor cells, are growing in efficacy and may play a critical role in the future of meniscal repair and regeneration.


2018 ◽  
Vol 14 (7) ◽  
pp. 2247-2258 ◽  
Author(s):  
Janarthanan Gopinathan ◽  
Mamatha Muraleedharan Pillai ◽  
Sivanandam Shanthakumari ◽  
Singaram Gnanapoongothai ◽  
Beliyur Krishna Dinakar Rai ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2004 ◽  
Vol 83 (02) ◽  
Author(s):  
A Haisch ◽  
A Evers ◽  
K Jöhrens-Leder ◽  
S Jovanovic ◽  
B Sedlmaier ◽  
...  
Keyword(s):  

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


Sign in / Sign up

Export Citation Format

Share Document