A New Bioassay Including a Small Scale Hepatocyte Bioreactor for Hepato-Mediated Toxicity Testing in a Target Cell Line

2002 ◽  
Vol 25 (10) ◽  
pp. 975-984 ◽  
Author(s):  
C.J. Deglmann ◽  
R. Metzger ◽  
M. Stickel ◽  
S. Hoerrlein ◽  
F.W. Schildberg ◽  
...  

New approaches for in vitro testing of hepato-mediated toxicity are undertaken to offer alternatives to in vivo animal testing. The described bioassay for hepato-mediated toxicity testing is based on a small scale hepatocyte-bioreactor with pig hepatocytes connected to a silicon sensor based microphysiometer system for monitoring of the extracellular acidification rate (EAR) of cells and the microphysiometer alone. EAR represents the metabolic activity of tested cells (hepatocytes and ZR 751 cells) under the influence of perfused media, compared to controls, which were set to 100%. Cyclophosphamide (CYCL), whose cytostatic effect is dependent on CYP 450 biotransformation was used as a model substrate. CYCL showed decrease of EAR in hepatocytes, but not in ZR 751 cells. Bioreactor supernatant including CYCL was pumped into the microphysiometer and EARs of the target ZR 751 cell line were recorded. After 7 h of bioreactor supernatant perfusion the ZR 751 cell line showed an EAR decrease of 18.68% ± 10.18, as compared to controls (bioreactor supernatant from the identical set-up without CYCL). Thus the presented model of hepato-activated toxicity showed an EAR decrease in the ZR 751 cell line that reflected the toxic activation of CYCL by the bioreactor. This new bioassay serves as an example of future applications for hepatocyte bioreactors in automated toxicity testing devices, e.g. in preclinical drug studies or evaluation of hepato-mediated toxicity, not depending on cell destruction or further assays.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tino Vollmer ◽  
Börje Ljungberg ◽  
Vera Jankowski ◽  
Joachim Jankowski ◽  
Griet Glorieux ◽  
...  

Abstract Identifying the key toxic players within an in-vivo toxic syndrome is crucial to develop targeted therapies. Here, we established a novel method that characterizes the effect of single substances by means of an ex-vivo incubation set-up. We found that primary human spermatozoa elicit a distinct motile response on a (uremic) toxic milieu. Specifically, this approach describes the influence of a bulk toxic environment (uremia) as well as single substances (uremic toxins) by real-time analyzing motile cellular behavior. We established the human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced toxicity to be used as a screening tool to identify in-vivo toxins. Further, we propose an application of the HSTT as a method of clinical use to evaluate toxin-removing interventions (hemodialysis).


Author(s):  
Francesca Pistollato ◽  
Federica Madia ◽  
Raffaella Corvi ◽  
Sharon Munn ◽  
Elise Grignard ◽  
...  

AbstractThe EU Directive 2010/63/EU   on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Friedman ◽  
Carmen Corciulo ◽  
Cristina M. Castro ◽  
Bruce N. Cronstein

AbstractAutophagy, a homeostatic pathway upregulated during cellular stress, is decreased in osteoarthritic chondrocytes and this reduction in autophagy is thought to contribute to the development and progression of osteoarthritis (OA). The adenosine A2A receptor (A2AR) is a potent anti-inflammatory receptor and deficiency of this receptor leads to the development of OA in mice. Moreover, treatment using liposomally conjugated adenosine or a specific A2AR agonist improved joint scores significantly in both rats with post-traumatic OA (PTOA) and mice subjected to a high fat diet obesity induced OA. Importantly, A2AR ligation is beneficial for mitochondrial health and metabolism in vitro in primary and the TC28a2 human cell line. An additional set of metabolic, stress-responsive, and homeostatic mediators include the Forkhead box O transcription factors (FoxOs). Data has shown that mouse FoxO knockouts develop early OA with reduced cartilage autophagy, indicating that FoxO-induced homeostasis is important for articular cartilage. Given the apparent similarities between A2AR and FoxO signaling, we tested the hypothesis that A2AR stimulation improves cartilage function through activation of the FoxO proteins leading to increased autophagy in chondrocytes. We analyzed the signaling pathway in the human TC28a2 cell line and corroborated these findings in vivo in a metabolically relevant obesity-induced OA mouse model. We found that A2AR stimulation increases activation and nuclear localization of FoxO1 and FoxO3, promotes an increase in autophagic flux, improves metabolic function in chondrocytes, and reduces markers of apoptosis in vitro and reduced apoptosis by TUNEL assay in vivo. A2AR ligation additionally enhances in vivo activation of FoxO1 and FoxO3 with evidence of enhanced autophagic flux upon injection of the liposome-associated A2AR agonist in a mouse obesity-induced OA model. These findings offer further evidence that A2AR may be an excellent target for promoting chondrocyte and cartilage homeostasis.


1998 ◽  
Vol 26 (5) ◽  
pp. 629-634
Author(s):  
Emiliana Falcone ◽  
Edoardo Vignolo ◽  
Livia Di Trani ◽  
Simona Puzelli ◽  
Maria Tollis

A reverse transcriptase polymerase chain reaction (RT-PCR) assay specific for identifying avian infectious bronchitis virus (IBV) in poultry vaccines, and the serological response to IBV induced by the inoculation of chicks with a Newcastle disease vaccine spiked with the Massachusetts strain of IBV, were compared for their ability to detect IBV as a contaminant of avian vaccines. The sensitivity of the IBV-RT-PCR assay provided results which were at least equivalent to the biological effect produced by the inoculation of chicks, allowing this assay to be considered a valid alternative to animal testing in the quality control of avian immunologicals. This procedure can easily be adapted to detect a number of contaminants for which the in vivo test still represents the only available method of detection.


Sign in / Sign up

Export Citation Format

Share Document