Mesoporous silica nanoparticle is comparatively safer than zinc oxide nanoparticle which can cause profound steroidogenic effects on pregnant mice and male offspring exposed in utero

2018 ◽  
Vol 34 (8) ◽  
pp. 507-524 ◽  
Author(s):  
Nisha Bara ◽  
M Eshwarmoorthy ◽  
Kesavan Subaharan ◽  
Gautam Kaul

The increasing use of nanomaterials has naturally caused heightened concerns about their potential risks to human and animal health. We investigated the effect of zinc oxide nanoparticles (ZnO NPs) and mesoporous silica nanoparticles (MSN) on steroidogenesis in the corpus luteum (CL) of pregnant mice and testis of male offspring. Pregnant albino mice were exposed to ZnO NPs and MSN for 2 days on alternate days, gestation days 15–19. Hepatic injury marker enzymes increased in the higher concentration of NM-exposed mother mice, but histological examination revealed no changes in the placenta of pregnant mice, whereas testis of male offspring showed gross pathological changes. The expression pattern of progesterone biosynthesis-related genes was also altered in the CL of NP-exposed pregnant mice. In utero exposure of ZnO NPs increased the relative expression of StAR in 100 mg/kg body weight (BW) ZnO NP-treated and bulk ZnO-treated groups and P450 side-chain cleavage enzyme (P450scc) in 50 mg/kg BW ZnO NP-treated and 100 mg/kg of bulk ZnO-treated male offspring. Serum testosterone concentration significantly increased in the 100 mg/kg of bulk ZnO-treated group and decreased in the 250 mg/kg of MSN-treated group and a single dose of 300 mg/Kg BW of ZnO NPs caused miscarriages and adversely affected the developing foetus in mice.

2016 ◽  
Vol 33 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Nidhi Rawat ◽  
Sandhya ◽  
Kesavan Subaharan ◽  
M Eswaramoorthy ◽  
Gautam Kaul

In the present work, we took two nanomaterials (NMs), mesoporous silica nanoparticles (MSNs) and multiwalled carbon nanotubes (MWCNTs), and compared their in vivo toxicity taking albino mice as a test animal model. Presently, conflicting data persist regarding behavior of these NMs with macromolecules like protein and lipid at the cellular level in cell lines as well as in animal models and this generated the interest to study them. The mice were treated orally with a single dose of 50 ppm MWCNTs and intraperitoneally with 10, 25, and 50 mg kg−1 body weight (BW) of MSNs and 1.5, 2.0, and 2.5 mg kg−1 BW of MWCNTs. Liver enzyme markers serum aspartate aminotransferase (AST), alanine aminotransferase, and alkaline phosphatase along with total protein (TP) levels were evaluated 7 days postexposure. No significant differences in organ weight indices or enzyme levels were observed between different treatment doses but there were significant differences between the treatment groups and the controls. Of the three enzymes assayed, AST displayed a peculiar pattern, especially in the MWCNTs intraperitoneally treated group. TP level was significantly increased in the orally treated MWCNTs group. The results showed that MWCNTs even at much smaller doses than MSNs displayed similar toxicity levels, suggesting that toxicity of MWCNTs is greater than MSNs.


2014 ◽  
Vol 33 (11) ◽  
pp. 1150-1157 ◽  
Author(s):  
S Amara ◽  
I Ben Slama ◽  
I Mrad ◽  
N Rihane ◽  
W Khemissi ◽  
...  

The aim of this study was to assess the potential subacute toxicity of zinc oxide (ZnO) nanoparticles (NPs) in Wistar rats in comparison with reference toxicant, zinc chloride (ZnCl2), of a non-nanoparticulate form. We therefore studied the relationships between zinc (Zn) accumulation, liver and kidney trace element levels, and plasmatic biochemical parameters. Rats in all groups were treated by intraperitoneal injection of ZnO NPs and/or ZnCl2 solution (25 mg/kg) every other day for 10 days. The contents of trace element in the liver and kidney were slightly modulated after ZnO NPs and/or ZnCl2 solution exposure. The same treatment increased the aspartate aminotransferase activity and uric acid concentration. However, ZnO NPs or ZnCl2 solution decreased the creatinine levels, whereas the combined intake of ZnO NPs and ZnCl2 decreased the glucose concentration. Interestingly, the analysis of the lyophilized powder of liver using the x-ray diffractometer showed the degradation of ZnO NPs in ZnO-treated group, instead there is a lack of NPs ZnO biosynthesis from the ZnCl2 solution injected in rats. These investigations suggest that combined injection of ZnO NPs and ZnCl2 solution has a possible toxic effect in rats. This effect could be related to Zn2+ ion release and accumulation of this element in organs. Our findings provide crucial information that ZnO appeared to be absorbed in the organs in an ionic form rather than in a particulate form.


1998 ◽  
Vol 17 (7) ◽  
pp. 365-372 ◽  
Author(s):  
A S Faqi ◽  
P R Dalsenter ◽  
H-J Merker ◽  
I Chahoud

1 Pregnant Wistar rats were treated orally with a single dose of 100 mg3,3',4,4'-tetrachlorobiphenyl (PCB 77)/ kg b.w. or 10 mg3,3',4,4',5 pentachlorobiphenyl (PCB 126)/kg b.w. on day 15 of pregnancy. The control rats received peanut oil at the same day. Developmental landmarks were assessed in all offspring rats and reproductive effects of PCB 77 and PCB 126 on male offspring were studied on postnatal day 65 (at puberty) and on postnatal day 140 (at adulthood). 2 The ano-genital distance as well as the ratio anogenital distance to body length was reduced in male pups of the PCB 126 group and the age at vaginal opening was significantly delayed in the female pups. 3 Testis, brain weights and daily sperm production were permanently increased and seminal vesicle weights were decreased in male offspring of the PCB 77 group. In male rats of PCB 126 group, the brain weights were permanently increased and ventral prostate weights permanently reduced. In both PCB groups, however, serum testosterone concentration was reduced only at adulthood. Additionally, the male rats of the PCB 126 group showed alterations in sexual behavior. In these rats the number of mounts with intromissions was significantly increased. 4 The results of this study show that PCB 126 elicits some TCDD-like reproductive effects after in utero exposure, while the reproductive effects of in utero exposure to PCB 77 on male offspring may be attributed to the neonatal hypothyroidism induced by the substance during early fetal development. Further studies using multiple doses and providing thyroid hormone data will be necessary to support this hypothesis.


Author(s):  
Anis Farhana Abdul Rahman ◽  
Ling Sy Mei ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono

Various dyes that are used in textile, paper, cosmetics and plastics industries may produce harmful effects on the health of living organisms and the environment if not treated properly before being discharged into water bodies. Among many techniques, photocatalytic process is one of the promising treatment for these dyes. Zinc oxide (ZnO) is well-known comparable with TiO2 due to its unique properties and numerous advantages. While, mesoporous silica nanoparticles (MSN) is an excellent solid support for heterogeneous catalysts due to its high surface area, thermal and mechanical stability, highly uniform pore distribution, tunable pore size, and unique hosting properties. Therefore, in this study, ZnO/MSN (ZM) catalysts were prepared and its physicochemical properties was characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The catalyst was tested on the photodecolorization of methylene blue (MB) dye. The results showed that the interaction between ZnO and MSN support could enhanced the photocatalytic activity. The 0.5 g L-1 of 5ZM was found to give the highest degradation (80 %) of 10 mg L-1 of MB solution at pH 7 after 3 h under UV light irradiation. The photodecolorization followed the pseudo first-order Langmuir-Hinshelwood kinetic model. This study demonstrated that the prepared 5ZM has a potential to be used in photocatalytic degradation of various dyes as well as organic pollutants.


2021 ◽  
Vol 28 ◽  
Author(s):  
José Rodrigues do Carmo Neto ◽  
Rhanoica Oliveira Guerra ◽  
Juliana Reis Machado ◽  
Anielle Christine Almeida Silva ◽  
Marcos Vinicius da Silva

: Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials mainly involves trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnO NPs on these parasites.


2019 ◽  
Vol 8 (5) ◽  
pp. 654-662 ◽  
Author(s):  
Zeynab Khamis El-Maddawy ◽  
Walaa Slouma Hamouda Abd El Naby

Abstract The present study aims to investigate the protective effects of zinc oxide nanoparticles (ZnO NPs) on doxorubicin-induced testicular injury. Forty mature male rats were randomly allocated into four equal groups: G1 (control), G2 (3 mg per kg BW of zinc oxide nanoparticles was administered), G3 (6 mg per kg BW of doxorubicin was intraperitoneally injected), and G4 (doxorubicin + ZnO NPs). Some fertility parameters, antioxidant status, genotoxicity assay, and a histopathological examination were used for this investigation. The doxorubicin-treated group showed a significant decrease in the index weight of reproductive organs, epididymal sperm count, motility%, and live sperm% and a significant increase in sperm abnormalities. Moreover, GSH and CAT activities were significantly decreased, and MDA content was significantly increased in the doxorubicin-treated group. Interestingly, co-administration of ZnO NPs significantly reduced the doxorubicin-induced changes in the investigated parameters. In addition, ZnO NPs alone did not show any undesirable effects on the sperm parameters, testis or DNA. However, its administration improves the reproductive parameters and significantly increases the testosterone level. We concluded that the administration of ZnO NPs at 3 mg per kg BW ameliorated the testicular toxicity and genotoxicity caused by doxorubicin through its antioxidant and androgenic activity.


2019 ◽  
Vol 20 (7) ◽  
pp. 542-550 ◽  
Author(s):  
Nahla S. El-Shenawy ◽  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Rasha A. Al-Eisa

Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG). Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points. Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group. Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.


Sign in / Sign up

Export Citation Format

Share Document