1,1,2,2-Tetrafluoroethane (HFC-134) (2018)

2019 ◽  
Vol 35 (3) ◽  
pp. 196-203

1,1,2,2-Tetrafluoroethane (HFC-134) is a colorless gas used as a foam expansion agent and heat transfer fluid. HFC-134 has a low acute inhalation toxicity with an LC50 of >244,000 ppm. The no-observed adverse effect level (NOAEL) and lowest-observed adverse effect level for cardiac sensitization (in epinephrine-challenged beagle dogs) were 75,000 and 100,000 ppm, respectively. A subacute 4-week GLP inhalation toxicity study exposed male and female Crl: CD®BR rats (10/sex) to 0, 2000, 10,000, or 50,000 ppm via whole-body inhalation. Transient and non-dose-response–related body weight changes were observed throughout the exposure period, but no statistically significant, test substance-related adverse effects were observed in any clinical observations, chemistry, hematology, or pathology. This study identified a NOAEL for HFC-134 of 50,000 ppm, the highest exposure level tested. HFC-134 is not genotoxic in in vitro studies; however, no in vivo studies are available. No developmental or maternal toxicity was found in female rats exposed to HFC-134 up to 50,000 ppm via whole-body inhalation in two different studies. Based on data for a similar material (HFC-134a), HFC-134 is not expected to be extensively metabolized or to cause genetic toxicity or carcinogenicity. The HFC-134 workplace environmental exposure level (WEEL) is based primarily on the subacute 4-week inhalation toxicity study in rats with the NOAEL of 50,000 ppm selected as the point of departure for the derivation of the 8-h TWA, health-based WEEL value. The developmental toxicity study also had a NOAEL of 50,000 ppm and was the highest exposure level tested. The subacute inhalation NOAEL was adjusted to account for interindividual variability, subacute to chronic duration, animal to human extrapolation, daily duration of exposure, and residual uncertainty. In addition, the lack of adverse effects noted in the toxicology studies for HFC-134a was considered. The resulting 8-h TWA WEEL value of 1000 ppm is expected to provide a significant margin of safety against the production of any potential adverse health effects in workers following long-term inhalation exposure to HFC-134.

2020 ◽  
Vol 36 (5) ◽  
pp. 310-321

Trifluoroiodomethane (CF3I) is a colorless and odorless gas used primarily as a fire suppressant. CF3I has low acute inhalation toxicity. The no-observed adverse effect level (NOAEL) of CF3I for cardiac sensitization in dogs was 2000 ppm. The potential effects of 4-week inhalation exposure in both rats and mice have been examined. In rats, the NOAEL was 10,000 ppm, and in mice, the NOAEL was 10,000 ppm. In a subchronic inhalation study in rats, the lowest observed adverse effect level (LOAEL) was 20,000 ppm for thyroid-related effects; the study NOAEL (for non-thyroid-related effects) was 20,000 ppm. In a reproductive/developmental inhalation toxicity study in rats, 20,000 ppm CF3I produced minimal general toxicity and no indication of reproductive or developmental toxicity. The LOAEL for parental toxicity (based on thyroid hormone effects) was 2000 ppm; excluding thyroid effects, the parental NOAEL was 7000 ppm CF3I. The observed effects on the thyroid in rats were considered of less relevance to human risk assessment than the other observed systemic effects because of known species-specific differences in sensitivity to thyroid hormone perturbations. There are no chronic toxicity or carcinogenicity studies available. CF3I had mixed results in various in vitro and in vivo genotoxicity assays. The NOAEL of 7000 ppm from the reproductive/developmental inhalation study was used as the point of departure (POD) for workplace environmental exposure level (WEEL) value development. This POD was adjusted to account for interindividual variability, duration of exposure, and database limitations. The resulting 8-h time-weighted average WEEL value of 500 ppm is expected to provide a significant margin of safety against any potential adverse health effects in workers exposed to CF3I. A 15-min short-term exposure limit of 1500 ppm was also established to protect workers from potential cardiac effects produced by acute, high-dose inhalation of CF3I.


2013 ◽  
Vol 32 (2) ◽  
pp. 113-122 ◽  
Author(s):  
John T. Houpt ◽  
Glenn J. Leach ◽  
Larry R. Williams ◽  
Mark S. Johnson ◽  
Gunda Reddy

4-Amino-2-nitrotoluene (4A2NT; CAS 119-32-4) is a degradation product of 2,4-dinitrotoluene. The toxicity data on 4A2NT are limited. Therefore, we collected toxicity data from rats to assess environmental and human health effects from exposures. The approximate lethal dose for both sexes was 5000 mg/kg. A 14-day toxicity study in rats was conducted with 4A2NT in the feed at concentrations of 0, 125, 250, 500, 1000, and 2000 ppm. Based on a 14-day oral dose range toxicity study with 4A2NT in the feed, 2000 ppm was selected as highest concentration for a subsequent 90-day study. An oral 90-day subchronic toxicity study in rats was conducted with concentrations of 0, 500, 1000, or 2000 ppm of 4A2NT in the feed. The calculated consumed doses of 4A2NT in the feed were 0, 27, 52, or 115 mg/kg/d for males and 0, 32, 65, or 138 mg/kg/d for females. A no-observed adverse effect level could not be determined. The lowest observed adverse effect level was 27 mg/kg/d for males and 32 mg/kg/d for female rats based upon decreased body weight gain. The decreased body weight gain in male rats was the most sensitive adverse event observed in this study and was used to derive a benchmark dose (BMD). A BMD of 23.1 mg/kg/d and BMD with 10% effect level of 15.5 mg/kg/d were calculated for male rats, which were used to derive an oral reference dose (RfD). The human RfD of 1.26 μg/kg/d was derived using current United States Environmental Protection Agency guidelines.


F1000Research ◽  
2021 ◽  
Vol 8 ◽  
pp. 1394
Author(s):  
Dirk W. Lachenmeier ◽  
Stephanie Habel ◽  
Berit Fischer ◽  
Frauke Herbi ◽  
Yvonne Zerbe ◽  
...  

Cannabidiol (CBD)-containing products are widely marketed as over the counter products, mostly as food supplements. Adverse effects reported in anecdotal consumer reports or during clinical studies were first assumed to be due to hydrolytic conversion of CBD to psychotropic Δ9-tetrahydrocannabinol (Δ9-THC) in the stomach after oral consumption. However, research of pure CBD solutions stored in simulated gastric juice or subjected to various storage conditions such as heat and light with specific liquid chromatographic/tandem mass spectrometric (LC/MS/MS) and ultra-high pressure liquid chromatographic/quadrupole time-of-flight mass spectrometric (UPLC-QTOF) analyses was unable to confirm THC formation. Another hypothesis for the  adverse effects of CBD products may be residual Δ9-THC concentrations in the products as contamination, because most of them are based on hemp extracts containing the full spectrum of cannabinoids besides CBD. Analyses of 181 food products of the German market (mostly CBD oils) confirmed this hypothesis: 21 products (12%) contained Δ9-THC above the lowest observed adverse effect level (2.5 mg/day). Inversely, CBD was present in the products below the no observed adverse effect level. Hence, it may be assumed that the adverse effects of some commercial CBD products are based on a low-dose effect of Δ9-THC and not due to effects of CBD itself. The safety, efficacy and purity of commercial CBD products is highly questionable, and all of the products in our sample collection showed various non-conformities to European food law such as unsafe Δ9-THC levels, hemp extracts or CBD isolates as non-approved novel food ingredients, non-approved health claims, and deficits in mandatory food labelling requirements. In view of the growing market for such lifestyle products, the effectiveness of the instrument of food business operators' own responsibility for product safety and regulatory compliance must obviously be challenged, and a strong regulatory framework for hemp products needs to be devised.


2021 ◽  
Vol 12 ◽  
Author(s):  
John Turner ◽  
Albert Licollari ◽  
Emil Mihalcea ◽  
Aimin Tan

NAD+ is an abundant molecule in the body and vital to all living cells. NAD+ levels decline with age, and this decline correlates with age-related diseases. Therefore, sustaining NAD+ levels offers potential benefits to healthspan and longevity. Here we conducted toxicity studies to evaluate the safety of Restorin® NMN, a high purity form of the direct NAD+ precursor, β-nicotinamide mononucleotide (NMN). Based on the preliminary toxicity study and a 14-days repeated dose toxicity study at a higher dose level exposure, Restorin® NMN was administered orally to Sprague-Dawley rats for 91 days followed by a 14-days recovery period. The oral doses of 500, 1,000, and 2000 mg/kg/day were compared. There were no test item-related findings that could be considered adverse events in animals dosed at 500 mg/kg/day. The findings in the Restorin® NMN high dose group (2000 mg/kg/day) were similar to the reference item (Nicotinamide Riboside Chloride) dosed at 1740 mg/kg/day: reduced body weight, reductions in body weight gains, and diminished food consumption. In conclusion, the No-Observed-Adverse-Effect-Level (NOAEL) for Restorin® NMN is 1,000 mg/kg/day in female rats and 500 mg/kg/day in male rats, and the Low-Observed-Adverse-Effect-Level (LOAEL) for Resotrin® NMN is 2000 mg/kg/day.


2021 ◽  
pp. 109158182098607
Author(s):  
Narendra S. Deshmukh ◽  
Shailesh Gumaste ◽  
Silma Subah ◽  
Nathasha Omal Bogoda

Palmitoylethanolamide (PEA) is an endogenous ethanolamine playing a protective and homeodynamic role in animals and plants. Prenatal developmental toxicity of PEA was tested following oral administration to pregnant female Wistar rats, from days 0 to 19 of gestation, at dosage of 250, 500, or 1,000 mg/kg body weight, according to Organisation for Economic Co-operation and Development Test Guideline No. 414. On gestation day 20, cesarean sections were performed on the dams, followed by examination of their ovaries and uterine contents. The fetuses were further examined for external, visceral, and skeletal abnormalities. Palmitoylethanolamide did not cause any alterations at any of the given dosages in the measured maternal parameters of systemic toxicity (body weight, food consumption, survival, thyroid functions, organ weight, histopathology), reproductive toxicity (preimplantation and postimplantation losses, uterus weight, number of live/dead implants and early/late resorptions, litter size and weights, number of fetuses, their sex ratio), and fetal external, visceral, or skeletal observations. Any alterations that were recorded were “normal variations” or “minor anomalies,” which were unrelated to treatment with PEA. Under the condition of this prenatal study, the no-observed-adverse-effect level of PEA for maternal toxicity, embryotoxicity, fetotoxicity, and teratogenicity in rats was found to be >1,000 mg/kg body weight/d. It indicates that PEA is well tolerated by and is safe to pregnant rats even at a high dose of 1,000 mg/kg body weight/d, equivalent to a human dose of greater than 9.7 g/d. This prenatal developmental toxicity study contributes greatly in building a robust safety profile for PEA.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1126
Author(s):  
Dong-Gu Kim ◽  
Jeonghoon Lee ◽  
Wonnam Kim ◽  
Hyo-Jin An ◽  
Jong-Hyun Lee ◽  
...  

The Glycyrrhiza radix (Licorice) is one of the most commonly used medicinal plants in Asian countries, such as China, India, and Korea. It has been traditionally used to treat many diseases, including cough, cold, asthma, fatigue, gastritis, and respiratory tract infections. A Glycyrrhiza new variety, Wongam (WG), has been developed by the Korea Rural Development Administration and revealed pharmacological effects. However, the potential adverse effects of WG have not been revealed yet. This study evaluates the general toxicity of the WG extract through a single and repeated oral dose toxicity study in Sprague-Dawley rats. After single oral dose administration, no significant toxicological changes or mortality was observed up to 5000 mg/kg. Over a 4-week repeated oral dose toxicity study, no adverse effects and target organs were observed up to 5000 mg/kg/day. Over a 13-week repeated oral dose toxicity study, no mortality or toxicological changes involving ophthalmology, water consumption, or hematology were observed up to 5000 mg/kg/day. Although other parameters were changed, the alterations in question were not considered toxicologically significant, since responses remained within normal ranges and were not dose-dependent. In conclusion, the no-observed-adverse-effect level (NOAEL) of WG was higher than 5000 mg/kg/day, and no target organs were identified in rats.


1998 ◽  
Vol 14 (1-2) ◽  
pp. 311-323 ◽  
Author(s):  
Antonio Mutti ◽  
Audrey Smargiassi

Increased serum prolactin (PRL) is a common finding among subjects exposed to styrene, perchloroethylene, lead (Pb), and manganese (Mn) at levels below the current threshold limit values. On a group basis, abnormally high basal PRL shows a dose-related distribution among workers exposed to styrene, Pb, and Mn. On the basis of dose-response relationships, the benchmark doses (BMD) for styrene metabolites in urine, lead in blood (Pb-B), and Mn in urine (Mn-U), are 4 mg/g creatinine, 112 μg/L, and 0.3 μg/L, respectively. Noteworthy, the BMD for Mn-U and Pb-B is well below the upper reference limit. A shift in the distribution but not in the prevalence of abnormally high values of serum PRL was observed among perchloroethylene-exposed dry cleaners, which makes interpretation in terms of risk difficult. The measurement of PRL thus provides opportunities for early identification of excess exposure to neurotoxic chemicals affecting dopaminergic control of pituitary secretion. For styrene, Pb, and Mn the BMD provides an objective and statistically determined threshold, which seems to be in good agreement with the estimated no-observed-adverse-effect-level (NOAEL). The NOAEL, however, is based on traditional approaches that require the application of uncertainty factors, e.g., a default factor of 10 when extrapolating the NOAEL from the lowest-observed- adverse-effect-level (LOAEL). Due to its sensitivity to a number of potential confounders, caution must be exercised when using PRL as a screening test at the individual level. Also, age and sex dependent variations in susceptibility may hamper extrapolations from the occupational settings to the general population.


Sign in / Sign up

Export Citation Format

Share Document