Toxic effects of subchronic oral acetamiprid exposure in rats

2019 ◽  
Vol 35 (11-12) ◽  
pp. 679-687 ◽  
Author(s):  
Bahar Ulus Karaca ◽  
Yağmur Emre Arican ◽  
Tugce Boran ◽  
Sevgi Binay ◽  
Alper Okyar ◽  
...  

Acetamiprid, a selective agonist of type-2 nicotinic acetylcholine receptors, is one of the most widely used neonicotinoids. The hepato- and nephrotoxic potential of acetamiprid has not been clarified although it is known to be toxic to other several organ systems, including the nervous, respiratory and immune systems. The present study aimed to investigate acetamiprid liver and kidney toxicity in male rats after a 90-day subchronic exposure to 12.5, 25 and 35 mg/kg. The biochemical and oxidative damage parameters were determined in the plasma and tissue samples as well as histopathological evaluation in the liver and kidney tissues. Acetamiprid caused oxidative damage and affected the liver, denoted by injury markers including the levels of cholesterol, and alanine aminotransferase and aspartate aminotransferase enzymes. There was also a decrease in plasma urea, uric acid and creatinine levels, all of which might result from liver injury. Additionally, acetamiprid was more toxic to the liver than the kidney according to the histopathological examinations. In conclusion, acetamiprid exhibited hepatotoxic potential at all treatment doses on male Sprague Dawley rats.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Abdulsamad Alsalahi ◽  
Mahmood Ameen Abdulla ◽  
Mohammed Al-Mamary ◽  
Mohamed Ibrahim Noordin ◽  
Siddig Ibrahim Abdelwahab ◽  
...  

Hepato- and nephrotoxicity of Khat consumption (Catha edulisForskal) have been evoked. Therefore, this study was conducted to evaluate such possible hepatorenal toxicity in female and male Sprague-Dawley rats (SD rats) focusing primarily on liver and kidney. In addition, female and male rats were investigated separately. Accordingly, forty-eight SD-rats (100–120 g) were distributed randomly into four groups of males and female (n=12). Normal controls (NCs) received distilled water, whereas test groups received 500 mg/kg (low dose (LD)), 1000 mg/kg (medium dose (MD)), or 2000 mg/kg (high dose (HD)) of crude extract ofCatha edulisorally for 4 weeks. Then, physical, biochemical, hematological, and histological parameters were analyzed. Results in Khat-fed rats showed hepatic enlargement, abnormal findings in serum aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of male and female SD-rats and serum albumin (A) and serum creatinine (Cr) of female as compared to controls. In addition, histopathological abnormalities confirmed hepatic and renal toxicities of Khat that were related to heavy Khat consumption. In summary, Khat could be associated with hepatic hypertrophy and hepatotoxicity in male and female SD-rats and nephrotoxicity only in female SD-rats.


Marine Drugs ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 12 ◽  
Author(s):  
Peter N. Huynh ◽  
Denise Giuvelis ◽  
Sean Christensen ◽  
Kerry L. Tucker ◽  
J. Michael McIntosh

Chemotherapeutic drugs are widely utilized in the treatment of human cancers. Painful chemotherapy-induced neuropathy is a common, debilitating, and dose-limiting side effect for which there is currently no effective treatment. Previous studies have demonstrated the potential utility of peptides from the marine snail from the genus Conus for the treatment of neuropathic pain. α-Conotoxin RgIA and a potent analog, RgIA4, have previously been shown to prevent the development of neuropathy resulting from the administration of oxaliplatin, a platinum-based antineoplastic drug. Here, we have examined its efficacy against paclitaxel, a chemotherapeutic drug that works by a mechanism of action distinct from that of oxaliplatin. Paclitaxel was administered at 2 mg/kg (intraperitoneally (IP)) every other day for a total of 8 mg/kg. Sprague Dawley rats that were co-administered RgIA4 at 80 µg/kg (subcutaneously (SC)) once daily, five times per week, for three weeks showed significant recovery from mechanical allodynia by day 31. Notably, the therapeutic effects reached significance 12 days after the last administration of RgIA4, which is suggestive of a rescue mechanism. These findings support the effects of RgIA4 in multiple chemotherapeutic models and the investigation of α9α10 nicotinic acetylcholine receptors (nAChRs) as a non-opioid target in the treatment of chronic pain.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zhuqing Leslie Li ◽  
Yonghui Shi ◽  
Guowei Le ◽  
Yinyi Ding ◽  
Qi Zhao

Scope. Oxidized tyrosine (O-Tyr) has been widely detected in many consumer protein products. O-Tyr products such as dityrosine (Dityr) and 3-nitrotyrosine (3-NT) are universal biomarkers of protein oxidation and have been demonstrated to be associated with metabolic disorders in biological system. Evaluation of potential intracorporal effects of dietary O-Tyr is important since the mechanism of biological impacts induced by oral oxidized protein products (OPPs) is still limited although we have proved that some dietary OPPs would induce oxidative injury to liver and kidney.Methods and Results. The present study aimed to investigate the dose-dependent hepatic injury caused by oral O-Tyr in rats. 24-week feeding of O-Tyr enhanced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, increased total bilirubin (TBiL) content, and led to oxidative damage in rats liver. Besides, O-Tyr distinctly increased the phosphorylation of p38 and ERK2 MAPKs and enhanced fibrosis-related TGF-β1 and Smad2/3 levels. Higher extracellular matrix (ECM) indexes (ICTP, PIIINP) and histological examination (HE and Masson staining) also supported dose-dependent hepatic fibrosis caused by O-Tyr.Conclusion. These findings reveal that O-Tyr may induce oxidative damage and hepatic fibrosis via MAPK/TGF-β1 signaling pathway, in which ROS together with malondialdehyde (MDA) and OPPs act as the pivotal mediators.


2020 ◽  
Vol 132 (5) ◽  
pp. 1197-1211
Author(s):  
Jun Ren ◽  
Xiuqing Ding ◽  
John J. Greer

Abstract Background Opioids can induce significant respiratory depression when administered as analgesics for the treatment of acute, postoperative, and chronic pain. There are currently no pharmacologic means of reversing opioid-induced respiratory depression without interfering with analgesia. Further, there is a growing epidemic of opioid overdose that could benefit from therapeutic advancements. The aim of this study was to test the ability of two partial agonists of α4β2 nicotinic acetylcholine receptors, varenicline (used clinically for smoking cessation) and ABT 594 (tebanicline, developed as an analgesic), to reduce respiratory depression induced by fentanyl, remifentanil, morphine, and a combination of fentanyl and diazepam. Methods Whole body plethysmographic recordings, nociception testing, and righting reflex testing were used to examine ventilation, analgesia, and sedation in adult male Sprague–Dawley rats. Results Pre-, co-, or postadministration of varenicline or ABT 594 did not alter baseline breathing but markedly reduced opioid-induced respiratory depression. Varenicline had no effect on fentanyl-induced analgesia and ABT 594 potentiated fentanyl-induced analgesia. Specifically, 10-min administration of fentanyl induced a decrease in respiratory rate to 43 ± 32% of control in vehicle group, which was alleviated by preadministration of varenicline (85 ± 14% of control, n = 8, P < 0.001) or ABT 594 (81 ± 36% of control, n = 8, P = 0.001). ABT 594 or varenicline with a low dose of naloxone (1 µg/kg), but not varenicline alone, partially reversed fentanyl-induced lethal apnea, but neither compound provided the very rapid and complete reversal of apnea achieved with high doses of naloxone (0.03 to 1 mg/kg). Administration of varenicline (n = 4, P = 0.034) or ABT 594 (n = 4, P = 0.034) prevented lethal apneas induced by the combination of fentanyl and diazepam. Conclusions Activation of α4β2 nicotinic acetylcholine receptors by varenicline and ABT 594 counters opioid-induced respiratory depression without interfering with analgesia. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


1978 ◽  
Vol 175 (3) ◽  
pp. 937-943 ◽  
Author(s):  
Barbara F. Hales ◽  
Valerie Jaeger ◽  
Allen H. Neims

The glutathione S-transferases that were purified to homogeneity from liver cytosol have overlapping but distinct substrate specificities and different isoelectric points. This report explores the possibility of using preparative electrofocusing to compare the composition of the transferases in liver and kidney cytosol. Hepatic cytosol from adult male Sprague–Dawley rats was resolved by isoelectric focusing on Sephadex columns into five peaks of transferase activity, each with characteristic substrate specificity. The first four peaks of transferase activity (in order of decreasing basicity) are identified as transferases AA, B, A and C respectively, on the basis of substrate specificity, but the fifth peak (pI6.6) does not correspond to a previously described transferase. Isoelectric focusing of renal cytosol resolves only three major peaks of transferase activity, each with narrow substrate specificity. In the kidney, peak 1 (pI9.0) has most of the activity toward 1-chloro-2,4-dinitrobenzene, peak 2 (pI8.5) toward p-nitrobenzyl chloride, and peak 3 (pI7.0) toward trans-4-phenylbut-3-en-2-one. Renal transferase peak 1 (pI9.0) appears to correspond to transferase B on the basis of pI, substrate specificity and antigenicity. Kidney transferase peaks 2 (pI8.5) and 3 (pI7.0) do not correspond to previously described glutathione S-transferases, although kidney transferase peak 3 is similar to the transferase peak 5 from focused hepatic cytosol. Transferases A and C were not found in kidney cytosol, and transferase AA was detected in only one out of six replicates. Thus it is important to recognize the contribution of individual transferases to total transferase activity in that each transferase may be regulated independently.


1993 ◽  
Vol 265 (3) ◽  
pp. H852-H856 ◽  
Author(s):  
B. J. Barber ◽  
R. A. Babbitt ◽  
S. Dutta ◽  
S. Parameswaran

Animal preparations for microscopy often require a superfusate solution to cover surgically exposed tissue. There are few, if any, data concerning the effects of this solution on extravascular protein concentration and hydration. The effect of superfusion on mesenteric tissue in anesthetized male Sprague-Dawley rats was studied. Tissue samples were taken from nonsuperfused and superfused tissue and analyzed for hydration, albumin, and transferrin content. The mesenteric tissue interstitial matrix was rapidly altered by normal saline superfusate. After superfusion, there was a decrease (P < 0.01) in tissue albumin concentration from 1.17 +/- 0.27 to 0.10 +/- 0.08 g/dl (n = 9). Tissue hydration increased from 4.98 +/- 0.8 micrograms water/microgram dry wt in controls to 7.38 +/- 1.2 micrograms water/micrograms dry wt after superfusion. When a range of superfusate albumin concentrations was used (0, 1, 2, and 3 g/dl), tissue albumin concentration changed 0.59 +/- 0.09 g/dl for each gram per deciliter change in superfusate concentration (P < 0.0001). The large changes in interstitial matrix protein content and hydration suggest that superfusate solution effects need to be considered in microvascular protein transport experiments.


2017 ◽  
Vol 79 (3) ◽  
Author(s):  
Siti Balkis Budin ◽  
Fatin Farhana Jubaidi ◽  
Siti Nur Farahana Mohd Noor Azam ◽  
Nur Liyana Mohamed Yusof ◽  
Izatus Shima Taib ◽  
...  

Previous studies found that Kelulut Honey produced by Trigona spp. bees is able to prevent oxidative damage in various pathological conditions.  Thus, the present study aimed to determine whether Kelulut Honey could prevent the sperm and testicular damage in streptozotocin-induced diabetic rats. Male Adult male Sprague-Dawley rats were divided into four groups: Non-Diabetic (NDM), Non-Diabetic with Kelulut Honey supplementation (NDMKH), Diabetic without supplementation (DM) and Diabetic with Kelulut Honey supplementation (DMKH).  Kelulut honey was given at the dose of 2.0 g/kg weight daily via gavage for 28 consecutive days. Results showed that sperm quality produced by diabetic rats supplemented with Kelulut honey significantly improved compared to the diabetic control groups (p<0.05). SOD activity and GSH level increased significantly (p<0.05) whereas PC and MDA levels significantly decreased in sperm and testis of DMKH rats when compared to DM rats (p<0.05). Histological observation showed obvious increase in spermatozoa in the lumen of epididymis and increased spermatogenic cells density in the testis of DMKH group.  In conclusion, Kelulut Honey has a potential in preventing the damage of sperm and testis in diabetic rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christian Arias-Reyes ◽  
Sofien Laouafa ◽  
Natalia Zubieta-DeUrioste ◽  
Vincent Joseph ◽  
Aida Bairam ◽  
...  

Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated “en bloc” carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO’s action.


1990 ◽  
Vol 122 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Om P. Sharma ◽  
Shafiq A. Khan ◽  
Gerhard F. Weinbauer ◽  
Mohammed Arslan ◽  
Eberhard Nieschlag

Abstract The effects of androgens on the bioactivity and molecular composition of pituitary FSH were examined in intact and GnRH antagonist-suppressed male rats. Eight groups of adult Sprague-Dawley rats were subjected to the following treatments: antagonist (75 μg/day by osmotic minipumps; sc), testosterone-filled Silastic implants (3×5 cm, sc), dihydrotestosterone-filled Silastic implants (3×5 cm, sc), E2 benzoate (15 μg/day, sc), and combined administration of antagonist with either steroid for 3 weeks. At the end of the treatment period, pituitaries were dissected out and homogenised. FSH content was determined in the pituitary extracts by an in vitro bioassay and a radioimmunoassay. Individual pituitary extracts from rats treated with vehicle, testosterone and testosterone + antagonist were subjected to isoelectric-focusing on sucrose density gradients performed in the pH range from 3.5 to 7.0. Individual isoelectric-focusing fractions (100-120) were analysed for bioactive and immunoreactive FSH. Treatment with antagonist, E2 or antagonist + E2 caused a significant decrease in pituitary FSH, whereas testosterone and dihydrotesterone alone or in combination with antagonist prevented the decrease in pituitary FSH. The effects of all treatments on both bioactive and immunoreactive FSH were similar. Testosterone treatment not only maintained FSH synthesis but also altered the molecular composition of pituitary FSH. Following treatment with testosterone there was a shift of maximal FSH bioactivity to the more acidic pH range. On the other hand, less bioactivity was recovered than corresponding immunoreactivity in the higher pH region, resulting in significantly reduced ratios of bioactivity to immunoreactivity of FSH. No significant differences were found in the isoelectric-focusing profiles or bioactivity to immunoreactivity ratios of pituitary FSH in animals treated with testosterone alone or in combination with antagonist. The results demonstrate that testosterone not only maintained the synthesis of both bioactive and immunoreactive FSH in male rats, but also influences the molecular composition of pituitary FSH. These effects of testosterone on pituitary FSH appear not to be mediated through hypothalamic GnRH.


Sign in / Sign up

Export Citation Format

Share Document