scholarly journals Isoelectric focusing of glutathione S-transferases from rat liver and kidney

1978 ◽  
Vol 175 (3) ◽  
pp. 937-943 ◽  
Author(s):  
Barbara F. Hales ◽  
Valerie Jaeger ◽  
Allen H. Neims

The glutathione S-transferases that were purified to homogeneity from liver cytosol have overlapping but distinct substrate specificities and different isoelectric points. This report explores the possibility of using preparative electrofocusing to compare the composition of the transferases in liver and kidney cytosol. Hepatic cytosol from adult male Sprague–Dawley rats was resolved by isoelectric focusing on Sephadex columns into five peaks of transferase activity, each with characteristic substrate specificity. The first four peaks of transferase activity (in order of decreasing basicity) are identified as transferases AA, B, A and C respectively, on the basis of substrate specificity, but the fifth peak (pI6.6) does not correspond to a previously described transferase. Isoelectric focusing of renal cytosol resolves only three major peaks of transferase activity, each with narrow substrate specificity. In the kidney, peak 1 (pI9.0) has most of the activity toward 1-chloro-2,4-dinitrobenzene, peak 2 (pI8.5) toward p-nitrobenzyl chloride, and peak 3 (pI7.0) toward trans-4-phenylbut-3-en-2-one. Renal transferase peak 1 (pI9.0) appears to correspond to transferase B on the basis of pI, substrate specificity and antigenicity. Kidney transferase peaks 2 (pI8.5) and 3 (pI7.0) do not correspond to previously described glutathione S-transferases, although kidney transferase peak 3 is similar to the transferase peak 5 from focused hepatic cytosol. Transferases A and C were not found in kidney cytosol, and transferase AA was detected in only one out of six replicates. Thus it is important to recognize the contribution of individual transferases to total transferase activity in that each transferase may be regulated independently.

1980 ◽  
Vol 189 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Barbara F. Hales ◽  
Christiane Hachey ◽  
Bernard Robaire

The presence of the glutathione S-transferases, enzymes that catalyse the conjugation of glutathione with a variety of compounds, is reported here, for the first time, in the mammalian epididymis–vas deferens. These glutathione S-transferases, approx. 50% of those from rat liver on a per-mg-of-protein basis, are resolved by isoelectric focusing into six peaks, each with a characteristic isoelectric point and substrate specificity. By these same criteria, the first three peaks (pI 8.9, 8.2 and 7.8) can be identified as transferases B, A and C respectively. The fifth peak (pI7.2) may correspond to transferase M; the fourth (pI7.5) and sixth (pI7.0) peaks do not correspond to previously described transferases. The distribution of transferase activity towards any one substrate studied differs in sequential sections of the epididymis and vas deferens; in addition, the longitudinal-distribution pattern differs for each of the three substrates studied. Isoelectric focusing of the cytosol fractions of the different sections further substantiates these observations. The potential significance of these enzymes and of their distribution in terms of epididymal function, maturation of spermatozoa, is discussed.


1976 ◽  
Vol 160 (2) ◽  
pp. 231-236 ◽  
Author(s):  
B F Hales ◽  
A H Neims

The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood.


1990 ◽  
Vol 122 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Om P. Sharma ◽  
Shafiq A. Khan ◽  
Gerhard F. Weinbauer ◽  
Mohammed Arslan ◽  
Eberhard Nieschlag

Abstract The effects of androgens on the bioactivity and molecular composition of pituitary FSH were examined in intact and GnRH antagonist-suppressed male rats. Eight groups of adult Sprague-Dawley rats were subjected to the following treatments: antagonist (75 μg/day by osmotic minipumps; sc), testosterone-filled Silastic implants (3×5 cm, sc), dihydrotestosterone-filled Silastic implants (3×5 cm, sc), E2 benzoate (15 μg/day, sc), and combined administration of antagonist with either steroid for 3 weeks. At the end of the treatment period, pituitaries were dissected out and homogenised. FSH content was determined in the pituitary extracts by an in vitro bioassay and a radioimmunoassay. Individual pituitary extracts from rats treated with vehicle, testosterone and testosterone + antagonist were subjected to isoelectric-focusing on sucrose density gradients performed in the pH range from 3.5 to 7.0. Individual isoelectric-focusing fractions (100-120) were analysed for bioactive and immunoreactive FSH. Treatment with antagonist, E2 or antagonist + E2 caused a significant decrease in pituitary FSH, whereas testosterone and dihydrotesterone alone or in combination with antagonist prevented the decrease in pituitary FSH. The effects of all treatments on both bioactive and immunoreactive FSH were similar. Testosterone treatment not only maintained FSH synthesis but also altered the molecular composition of pituitary FSH. Following treatment with testosterone there was a shift of maximal FSH bioactivity to the more acidic pH range. On the other hand, less bioactivity was recovered than corresponding immunoreactivity in the higher pH region, resulting in significantly reduced ratios of bioactivity to immunoreactivity of FSH. No significant differences were found in the isoelectric-focusing profiles or bioactivity to immunoreactivity ratios of pituitary FSH in animals treated with testosterone alone or in combination with antagonist. The results demonstrate that testosterone not only maintained the synthesis of both bioactive and immunoreactive FSH in male rats, but also influences the molecular composition of pituitary FSH. These effects of testosterone on pituitary FSH appear not to be mediated through hypothalamic GnRH.


2020 ◽  
Vol 39 (11) ◽  
pp. 1565-1581
Author(s):  
S Iqbal ◽  
F Jabeen ◽  
C Peng ◽  
MU Ijaz ◽  
AS Chaudhry

Nickel nanoparticles (Ni-NPs) have been widely used in various industries related to electronics, ceramics, textiles, and nanomedicine. Ambient and occupational exposure to Ni-NPs may bring about potential detrimental effects on animals and humans. Thus, there is a growing effort to identify compounds that can ameliorate NPs-associated pathophysiologies. The present study examined Cinnamomum cassia ( C. cassia) bark extracts (CMBE) for its ameliorative activity against Ni-NPs-induced pathophysiological and histopathological alterations in male Sprague Dawley rats. The biochemical analyses revealed that dosing rats with Ni-NPs at 10 mg/kg/body weight (b.w.) significantly altered the normal structural and biochemical adaptations in the liver and kidney. Conversely, supplementations with CMBE at different doses (225, 200, and 175 mg/kg/b.w. of rat) ameliorated the altered blood biochemistry and reduced the biomarkers of liver and kidney function considerably ( p < 0.05) in a dose-dependent manner. However, the best results were at 225 mg/kg/b.w. of rat. The study provided preliminary information about the protective effect of C. cassia against Ni-NPs indicated liver and kidney damages. Future investigations are needed to explore C. cassia mechanism of action and isolation of single constituents of C. cassia to assess their pharmaceutical importance accordingly.


MicroRNA ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 224-231
Author(s):  
Amin Derakhshanfar ◽  
Javad Moayedi ◽  
Mahjoob Vahedi ◽  
Abouzar Valizadeh

Background: Arum conophalloides (A. conophalloides) is a wild edible delicate plant, widely used in traditional medicine. Objective: This study aimed to examine the effects of A. conophalloides extracts on biochemical, molecular, and histopathological changes in the rat. Methods: Fifty adult male Sprague-Dawley rats were divided into 5 groups (10 each) as follows: G1 or control, received distilled water; G2 and G3, treated with the aqueous extract at doses of 200 and 400 mg/kg; G4 and G5, treated with the hydroalcoholic extract at doses of 200 and 400 mg/kg. Prior to and at the end of the experiments, the serum levels of biochemistry parameters and the relative expression of miR-122 were assessed. Moreover, the liver and kidney tissues were examined microscopically. Results: Liver and kidney tissues showed normal structure in all groups. There were no significant changes in biochemical indices or the expression of miR-122 in the extract-treated groups at the dose of 200 mg/kg. However, the group that received the aqueous extract at the dose of 400 mg/kg exhibited a significantly lower level of HDL, LDL, ALT, and ALP in comparison to the control. Additionally, miR-122 expression in this group exhibited a 10-fold increase (P=0.009). Conclusion: The serum level of hepatocyte-specific miR-122 will be more helpful in detecting hepatic changes in early stages than ALT and AST activity or histopathological evaluations of liver sections. Our findings highlight the potential hepatotoxicity of A. conophalloides aqueous extract in a rat model.


1991 ◽  
Vol 261 (6) ◽  
pp. F975-F981
Author(s):  
J. K. McKenzie ◽  
D. R. Jones ◽  
I. M. McKenzie ◽  
D. D. Smyth

Isoelectric species of renin are physically heterogeneous. Recent evidence suggests that they may differ functionally, with some species producing natriuresis and diuresis, whereas others have no effect. A physiological function of secreted prorenin has not been documented in any species. The present study was designed to confirm and describe for the first time the renal effects of certain isoelectric species of prorenin. Anesthetized Sprague-Dawley rats were injected (0.1 ml) with trypsin-activated or nonactivated prorenin obtained from human ovarian follicular fluid. The dose chosen was calculated as sufficient to produce 2,300 ng angiotensin I.h-1.100 g rat body wt-1 in the presence of excess sheep substrate. Blood pressure, creatinine clearance, urine flow rate, and urine sodium, potassium, and osmolar excretion were measured. Activated prorenin from isoelectric peaks at isoelectric points (pI) 5.1, 5.2, 5.4, and 5.6 produced marked increases in urine volume (sixfold) and sodium excretion (7- to 10-fold) compared with the group receiving the vehicle (1% albumin in 0.9% saline). Activated prorenin from peaks at pI 4.9 and 5.8 produced no significant increase over the vehicle-only experiments. Captopril pretreatment (1 mg/kg iv) completely blocked the effects of peaks at pI 5.4 and 5.6. Interestingly, injection of nonactivated prorenin from peaks at pI 5.4 and 5.6 produced effects similar to the injection of activated prorenin from these peaks. Similarly, this effect was blocked by pretreatment with captopril. In summary, only certain isoelectric peaks of human prorenin whether activated, to active renin, or nonactivated produced a marked natriuresis and diuresis.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 347 (3) ◽  
pp. 787-795
Author(s):  
Damian BRAUZE ◽  
Danuta MALEJKA-GIGANTI

β-Naphthoflavone (β-NF) is a widely used inducer of phase-I and phase-II enzymes controlled by aryl hydrocarbon receptor (AhR). Studies of competitive binding with 3H-labelled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3-MC) and benzo[a]pyrene (B[a]P) have shown that β-NF is a high-affinity ligand for AhR and also for polycyclic aromatic hydrocarbon (PAH)-binding protein, both soluble proteins of rat liver in 8 S and 4 S fractions, respectively, of sucrose gradients. This study examined binding of [3H]β-NF to liver cytosolic proteins of female Sprague-Dawley rats. Treatment of rats with β-NF, 3-MC, TCDD or α-naphthoflavone (α-NF) increased the specific [3H]β-NF binding to liver cytosol up to 125-fold that of vehicle (corn oil)-treated rats (< 100 fmol/mg of protein). Sucrose gradients revealed a large 4 S and a small 8 S peak of radioactivity from [3H]β-NF binding to cytosols of β-NF-, 3-MC-, TCDD- or α-NF-treated rats. Whereas co-incubation with the unlabelled β-NF eliminated both peaks, co-incubation with 2,3,7,8-tetrachlorodibenzofuran (TCDF) eliminated only the 8 S peak. The sucrose density gradient from [3H]TCDD binding to cytosol of β-NF- or TCDD-treated rats yielded a small 4 S and a larger 8 S peak; only the latter was abolished by co-incubation with TCDF. Thus, the patterns of sedimentation, distribution and elimination of radioactivity from the 8 S fraction of the liver cytosols from β-NF-, 3-MC-, TCDD- or α-NF-treated rats were characteristic for the AhR, whereas those from the 4 S fraction appeared specific for [3H]β-NF binding. The data indicate that potent AhR agonists, TCDD, 3-MC and β-NF, and to a lesser extent α-NF, a weak AhR agonist, induce a 4 S [3H]β-NF-binding protein in liver cytosol of female rats. α-NF, β-NF and 3-MC were effective competitors (80-85% inhibition) of the [3H]β-NF-specific binding to the β-NF-, 3 MC- or TCDD-induced 4 S protein, whereas several PAHs including B[a]P and benzo[e]pyrene were only weak competitors. The increased [3H]β-NF binding was not associated with glycine N-methyltransferase activity. Hence, the 4 S [3H]β-NF-binding protein described herein differs from the constitutive 4 S PAH-binding protein of rat liver cytosols in the inducibility by β-NF and 3-MC, ligand-binding characteristics, and lack of glycine N-methyltransferase activity. Gel filtration on Sephacryl of liver cytosols from β-NF-treated rats indicated a molecular mass of ≈ 42 kDa for [3H]β-NF-bound protein and suggested that it was derived from a large mass component that before the radioligand binding was eluted with the void volume of the gel and sedimented in a 7 S fraction of the sucrose gradient. The [3H]β-NF binding activity was not eluted with glutathione S-transferase Ya, aldehyde-3-dehydrogenase or DT-diaphorase [NAD(P)H: quinone oxidoreductase] activities, which are AhR-controlled and β-NF-inducible. Further studies are needed to determine the identity and function of this novel protein which may be involved either directly or indirectly (as a carrier protein) in xenobiotic metabolism in vivo.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Abdulsamad Alsalahi ◽  
Mahmood Ameen Abdulla ◽  
Mohammed Al-Mamary ◽  
Mohamed Ibrahim Noordin ◽  
Siddig Ibrahim Abdelwahab ◽  
...  

Hepato- and nephrotoxicity of Khat consumption (Catha edulisForskal) have been evoked. Therefore, this study was conducted to evaluate such possible hepatorenal toxicity in female and male Sprague-Dawley rats (SD rats) focusing primarily on liver and kidney. In addition, female and male rats were investigated separately. Accordingly, forty-eight SD-rats (100–120 g) were distributed randomly into four groups of males and female (n=12). Normal controls (NCs) received distilled water, whereas test groups received 500 mg/kg (low dose (LD)), 1000 mg/kg (medium dose (MD)), or 2000 mg/kg (high dose (HD)) of crude extract ofCatha edulisorally for 4 weeks. Then, physical, biochemical, hematological, and histological parameters were analyzed. Results in Khat-fed rats showed hepatic enlargement, abnormal findings in serum aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of male and female SD-rats and serum albumin (A) and serum creatinine (Cr) of female as compared to controls. In addition, histopathological abnormalities confirmed hepatic and renal toxicities of Khat that were related to heavy Khat consumption. In summary, Khat could be associated with hepatic hypertrophy and hepatotoxicity in male and female SD-rats and nephrotoxicity only in female SD-rats.


1995 ◽  
Vol 14 (10) ◽  
pp. 795-800 ◽  
Author(s):  
RJ Flanagan ◽  
M. Ruprah ◽  
AV Strutt ◽  
P. Malarkey ◽  
A. Cockburn

1 Urinary alkalinisation may be helpful in treating acute poisoning with uncouplers of oxidative phosphorylation containing a phenolic hydroxyl (pKa 4-6) or other acidic moiety. 2 We studied the effects of urine alkalinisation and acidi fication on the tissue distribution of hexachlorophene (HCP, pKa 5.7) in male Sprague Dawley rats (10 rats/group). 3 Ammonium chloride (10 mL kg-1, 2% m/v) or sodium bicarbonate (10 mL kg-1, 2% m/v) were administered by gavage on three occasions over 24 h, prior to a single gavage dose of HCP (180 mg kg-1). Controls received aqueous sodium chloride (10 mL kg-1, 0.9% m/v) fol lowed by either HCP (180 mg kg-1) or vehicle alone. 4 Urine pH, body mass and body temperature were moni tored during the study and, at the conclusion of the experiment (12 h post-HCP dose), organ mass (liver, kidney, brain), and plasma, urine and tissue HCP concentrations were measured. 5 No clinical features of toxicity were observed in any group. However, sodium bicarbonate significantly reduced median HCP in liver — median plasma and kidney HCP concentrations were also reduced but not significantly. Conversely, ammonium chloride signifi cantly increased median HCP concentrations in liver and kidney — median plasma HCP was also increased but not significantly. 6 The results provide some support for the hypothesis that blood pH influences the tissue distribution of uncou plers of oxidative phosphorylation containing an acidic moiety. Urinary alkalinisation may be useful in treating acute poisoning with these compounds.


Open Medicine ◽  
2009 ◽  
Vol 4 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Kerim Cayir ◽  
Ali Karadeniz ◽  
Abdulkadir Yildirim ◽  
Yildiray Kalkan ◽  
Akar Karakoc ◽  
...  

AbstractThe present study was designed to investigate the protective effects of L-carnitine (LC) on changes in the levels of lipid peroxidation and endogenous antioxidants induced by cisplatin (cis-diamminedichloroplatinum II, CDDP) in the liver and kidney tissues of rats. Twenty-four Sprague Dawley rats were equally divided into four groups of six rats each: control, cisplatin, L-carnitine, and L-carnitine plus cisplatin. The degree of protection produced by L-carnitine was evaluated by determining the level of malondialdehyde (MDA). The activity of glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and superoxide dismutase (SOD) were estimated from liver and kidney homogenates, and the liver and kidney were histologically examined as well. L-carnitine elicited significant liver and kidney protective activity by decreasing the level of lipid peroxidation (MDA) and elevating the activity of GSH, GSHPx, GST, and SOD. Furthermore, these biochemical observations were supported by histological findings. In conclusion, the present study indicates a significant role for reactive oxygen species (ROS) and their relation to liver and kidney dysfunction, and points to the therapeutic potential of LC in CDDP-induced liver and kidney toxicity.


Sign in / Sign up

Export Citation Format

Share Document