Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds

2011 ◽  
Vol 26 (6) ◽  
pp. 565-577 ◽  
Author(s):  
Shih-Ching Wu ◽  
Wei-Hong Chang ◽  
Guo-Chung Dong ◽  
Kuo-Yu Chen ◽  
Yueh-Sheng Chen ◽  
...  

Gelatin nanofibers (GNs) prepared by electrospinning were cross-linked with glutaraldehyde vapor to improve their water-resistant ability. After cross-linking treatment, the form of the fibers expressed no substantial change, but the average diameter of the fibers increased with increasing cross-linking time. The swelling induced by the moisture during the cross-linking process was moderated when the cross-linking time reached 45 min. The contact angle measurements confirmed that the electrospun gelatin fibers were more hydrophilic than the gelatin film (GF). Increasing the cross-linking time did not alter the hydrophilic properties of the gelatin fibers. The cell compatibility was evaluated based on 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, scanning electron microscope and confocal microscope observations, and Western blot analysis by culturing MG-63 cells on the GFs and GNs. The nanofibrous structure fabricated by an electrospinning technique was found to enhance cell adhesion and proliferation. This process is a cost-effective simulation of GN structures’ promising applications on scaffold preparation for tissue engineering.

2012 ◽  
Vol 550-553 ◽  
pp. 1114-1119
Author(s):  
Yu Zhang Du ◽  
Dai Di Fan ◽  
Xiao Xuan Ma ◽  
Chen Hui Zhu ◽  
Li Jun Zhang

In this paper, the cross-linking injection hydrogel were synthesized by EDC crosslinker and Carboxymethyl chitosan (CMCS)/Human-like collagen (HLC). Cytotoxicity was assessed by Methylthiazolydiphenyl-tetrazolium bromide (MTT) assay which indicated that the hydrogels was non-toxic to the BHK21 cell .Chondrocyct-encapsulation of this hydrogel were studied in order to asses the cells compatibility of the injection gel. The result showed that the material has no cytotoxicity to the cells and promoted cell adhesion and proliferation. Injected those hydrogels into mice subcutaneous , the following parameters were evaluated: inflammatory response, vascularization, new hypoderm generation. After 2,4,12,and 24 weeks of healing, the rats were sacrilifced suggested that gels in animals did not induce inflammation obvious, vessel bestrid the material after 4 weeks injection, new hypoderm generated in 12 weeks and packaged the hydrogels after 24 weeks. Consequently the gels are promised for the application in the biomaterials area.


2018 ◽  
Vol 19 (10) ◽  
pp. 3994-4002 ◽  
Author(s):  
Payel Dowari ◽  
Shriya Saha ◽  
Bapan Pramanik ◽  
Sahnawaz Ahmed ◽  
Nilotpal Singha ◽  
...  

2017 ◽  
Vol 748 ◽  
pp. 39-44 ◽  
Author(s):  
Stefano Merighi ◽  
Emanuele Maccaferri ◽  
Juri Belcari ◽  
Andrea Zucchelli ◽  
Tiziana Benelli ◽  
...  

Interaction between poly (m-phenylene isophtalamide) (PMIA) electrospun nanofibers and commercial epoxy resin precursor during the cross-linking process was investigated, in order to use such polyaramidic nanofibers for composite materials reinforcement. Hence nanofibrous PMIA mats were produced via electrospinning technique to be used for the functional modification of the epoxy matrix composite properties. When adding such fibers to an epoxy resin precursor, it was observed a strong influence on the kinetics of its curing process. The final results, however, demonstrates that boosting the reaction condition (raising the temperature and the reaction time) the curing is pushed to completion, indicating that the cross-linking process of the resin is just delayed and not completely hampered. It will be therefore necessary to rethink the composite cure cycle when PMIA nanofibers are added to the composite material, in order to attain significant improvement of the final composite performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Fan ◽  
Junfeng Hui ◽  
Zhiguang Duan ◽  
Daidi Fan ◽  
Yu Mi ◽  
...  

We investigated the feasibility of oleuropein as a cross-linking agent for fabricating three-dimensional (3D) porous composite scaffolds for bone tissue engineering. Human-like collagen (HLC) and nanohydroxyapatite (n-HAp) were used to fabricate the composite scaffold by way of cross-linking. The mechanical tests revealed superior properties for the cross-linked scaffolds compared to the uncross-linked scaffolds. The as-obtained composite scaffold had a 3D porous structure with pores ranging from 120 to 300 μm and a porosity of73.6±2.3%. The cross-linked scaffolds were seeded with MC3T3-E1 Subclone 14 mouse osteoblasts. Fluorescence staining, the Cell Counting Kit-8 (CCK-8) assay, and scanning electron microscopy (SEM) indicated that the scaffolds enhanced cell adhesion and proliferation. Our results indicate the potential of these scaffolds for bone tissue engineering.


2010 ◽  
Vol 76 ◽  
pp. 133-138 ◽  
Author(s):  
Giulio D. Guerra ◽  
Caterina Cristallini ◽  
Elisabetta Rosellini ◽  
Niccoletta Barbani

Composites between hydroxyapatite (HA) and collagen (Col) may be used to make bioresorbable scaffolds for bone reconstruction. A suspension of micro-particles (average diameter ≅ 30 µm) of HA annealed at 1100°C in Col solution (80:20 HA to Col weight ratio) was manufactured in films by casting, and then some films were cross-linked by glutaraldehyde vapours. Cross-linked sponges were obtained by treating the suspension with transglutaminase, and by lyophilizing the so obtained gel. Characterization by scanning electron microscopy, water sorption test, Col release in water, thermogravimetric analysis and differential scanning calorimetry shows that the cross-linking enhances the stability of the composite. Conversely, neither the interactions between HA and Col, detected by spotlight FT-IR, nor the degradation by collagenase, which is a requirement for the bioresorbibility, are affected by the cross-linking.


2009 ◽  
Vol 72 (11) ◽  
pp. 2293-2300 ◽  
Author(s):  
CHANUTTAPORN DHERAPRASART ◽  
SIRIRAT RENGPIPAT ◽  
PITT SUPAPHOL ◽  
JIRARAT TATTIYAKUL

Gelatin electrospun (e-spun) fiber mats containing nisin were produced by electrostatic spinning of gelatin-nisin in 70% (vol/vol) acetic acid aqueous solutions. Varying nisin loading concentration (0 to 3% [wt/wt]) did not affect the fiber average diameter, whereas increasing gelatin concentration from 20 to 24% (wt/vol) caused an increase in the average diameter. All nisin-loaded gelatin e-spun fiber mats demonstrated inhibition against Lactobacillus plantarum TISTR 850. However, all fiber mats were fragile and easily dissolved in water. Cross-linking by saturated glutaraldehyde vapor at 37°C for 5 min was done to strengthen the mat. Tensile strength, Young's modulus, and elongation of the cross-linked gelatin-nisin e-spun fiber mats varied in the range of 2.6 to 20.3 MPa, 163 to 966 MPa, and 1.7 to 5.9%, respectively. Cross-linking did not affect the mat's inhibition activity against L. plantarum TISTR 850. Nisin retention in cross-linked antimicrobial gelatin e-spun fiber mats was in the range of 1.0 to 1.22%. Increasing temperature caused an increase in nisin release, but increasing water activity did not cause a significant difference in nisin release over 50 h. After storage at 25°C for 5 months, the antimicrobial gelatin e-spun fiber mat still showed inhibition against L. plantarum TISTR 850. The mats also inhibited the growth of Staphylococcus aureus and Listeria monocytogenes but not Salmonella Typhimurium.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Xinyu Zhang ◽  
Xinggang Chen

Polyamide 6 (PA6)/CeO2 composite nanofibers were prepared by electrospinning technique. The morphological, structural, and mechanical properties of the PA6/CeO2 nanofibers were investigated by using SEM, XRD, Fourier transform-infrared (FT-IR) spectroscopy, and an electronic universal tensile testing machine. SEM images revealed that the nanofibers were well oriented and had good incorporation with CeO2, the average diameter of composite fibers first decreases and then increases with the loading of CeO2. The crystallinity of fibers decreases after the addition of CeO2. The tensile strength of the fibers first increases and then decreases with the increasing concentration of CeO2. The proliferation properties of mouse macrophages and osteoblasts on the PA6/CeO2 nanofibers were analyzed by an in vitro cell compatibility test, the results show that PA6/CeO2 composite fibers is nontoxic to macrophages and osteoblasts and has good biocompatibility.


2020 ◽  
Vol 10 (16) ◽  
pp. 5530 ◽  
Author(s):  
Rachele Sergi ◽  
Valeria Cannillo ◽  
Aldo R. Boccaccini ◽  
Liliana Liverani

Poly(ε-caprolactone) (PCL) and PCL/bioactive glass composite fiber mats were produced by electrospinning technique. To improve cell adhesion and proliferation (i) 45S5, (ii) a bioactive glass containing strontium and magnesium oxides, and (iii) a bioactive glass containing zinc oxide were separately added to the starting PCL solution before electrospinning. A good incorporation of bioactive glass particles in PCL electrospun mats was confirmed by SEM and FTIR analyses. Bioactivity was evaluated by immersion of PCL mats and PCL/bioactive glass electrospun fiber mats in simulated body fluid (SBF). Bone murine stromal cells (ST-2) were employed in WST-8 assay to assess cell viability, cell morphology, and proliferation. The results showed that the presence of bioactive glass particles in the fibers enhances cell adhesion and proliferation compared to neat PCL mats. Furthermore, PCL/bioactive glass electrospun mats showed higher wound-healing rate (measured as cell migration rate) in vitro compared to neat PCL electrospun mats. Therefore, the characteristics of the PCL matrix combined with biological properties of bioactive glasses make PCL/bioactive glass composite ideal candidate for biomedical application.


2018 ◽  
Vol 69 (7) ◽  
pp. 1756-1759 ◽  
Author(s):  
Luminita Confederat ◽  
Iuliana Motrescu ◽  
Sandra Constantin ◽  
Florentina Lupascu ◽  
Lenuta Profire

The aim of this study was to optimize the method used for obtaining microparticles based on chitosan � a biocompatible, biodegradable, and nontoxic polymer, and to characterize the developed systems. Chitosan microparticles, as drug delivery systems were obtained by inotropic gelation method using pentasodiumtripolyphosphate (TPP) as cross-linking agent. Chitosan with low molecular weight (CSLMW) in concentration which ranged between 0.5 and 5 %, was used while the concentration of cross-linking agent ranged between 1 and 5%. The characterization of the microparticles in terms of shape, uniformity and adhesion was performed in solution and dried state. The size of the microparticles and the degree of swelling were also determined. The structure and the morphology of the developed polymeric systems were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The average diameter of the chitosan microparticles was around 522 �m. The most stable microparticles were obtained using CSLMW 1% and TPP 2% or CSLMW 0.75%and TPP 1%. The micropaticles were spherical, uniform and without flattening. Using CSLMW in concentration of 0.5 % poorly cross-linked and crushed microparticles have been obtained at all TPP concentrations. By optimization of the method, stable chitosan-based micropaticles were obtained which will be used to develop controlled release systems for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document