Novel phytochemical Cissus quadrangularis extract–loaded chitosan/Na-carboxymethyl cellulose–based scaffolds for bone regeneration

2018 ◽  
Vol 33 (6) ◽  
pp. 629-646 ◽  
Author(s):  
Sedef Tamburaci ◽  
Ceren Kimna ◽  
Funda Tihminlioglu

Medicinal plants are attracting considerable interest as a potential therapeutic agent for bone tissue regeneration. Cissus quadrangularis L. is also a medicinal plant known with its osteogenic activity. In this study, a phytochemical scaffold was produced by incorporating Cissus quadrangularis with chitosan/Na-carboxymethyl cellulose blend by lyophilization technique. The effect of Cissus quadrangularis loading on the mechanical, morphological, chemical, and degradation properties as well as in vitro cytotoxicity, cell proliferation, and differentiation of the composites was investigated. Scanning electron microscopy images showed that porous Cissus quadrangularis–loaded scaffolds were obtained with an average pore size of 148–209 µm which is appropriate for bone regeneration. Cissus quadrangularis incorporation enhanced the compression modulus of scaffolds from 76 to 654 kPa. In vitro cell culture results indicated that Cissus quadrangularis/chitosan/Na-carboxymethyl cellulose scaffolds provided a favorable substrate for the osteoblast adhesion, proliferation, and mineralization. Results supported the osteoinductive property of the Cissus quadrangularis extract–incorporated scaffolds even without osteogenic media supplement. Cissus quadrangularis extract increased the alkaline phosphatase activity of the SaOS-2 cells on scaffolds on 7th and 14th days of incubation. The investigation of characterization and cell culture studies suggest that Cissus quadrangularis–loaded osteoinductive Cissus quadrangularis/chitosan/Na-carboxymethyl cellulose scaffold can serve as a potential biomaterial for bone tissue engineering applications.

2006 ◽  
Vol 309-311 ◽  
pp. 985-988 ◽  
Author(s):  
J.H. Yoon ◽  
J.T. Kim ◽  
Eui Kyun Park ◽  
Shin Yoon Kim ◽  
Chang Kuk You ◽  
...  

As a part of the effort to develop a suitable scaffold for tissue-engineered bone regeneration, we modified calcium metaphosphate (CMP) ceramic with Na20 and evaluated its efficiency as a scaffold. We incorporate 5% Na20 into pure CMP and prepare for an average pore size of 250 or 450 µm average pore sizes. The incorporation of 5% Na2O caused reduced compressive strength and there was no change in biodegradability. The in vitro cellular attachment and proliferation rate, however, were slightly improved. The 5% Na2O-incorporated macroporous CMP ceramic-cell constructs treated with Emdogain induced ectopic bone formation more effectively than those without Emdogain treatment. These results suggest that the incorporation of 5% Na2O into pure CMP is not effective for improving the physical characteristics of pure CMP but it is positive for improving the cellular reaction and osteogenic effect with the addition of Emdogain.


2017 ◽  
Vol 8 ◽  
pp. 204173141771207 ◽  
Author(s):  
Mathieu Maisani ◽  
Daniele Pezzoli ◽  
Olivier Chassande ◽  
Diego Mantovani

Tissue engineering is a promising alternative to autografts or allografts for the regeneration of large bone defects. Cell-free biomaterials with different degrees of sophistication can be used for several therapeutic indications, to stimulate bone repair by the host tissue. However, when osteoprogenitors are not available in the damaged tissue, exogenous cells with an osteoblast differentiation potential must be provided. These cells should have the capacity to colonize the defect and to participate in the building of new bone tissue. To achieve this goal, cells must survive, remain in the defect site, eventually proliferate, and differentiate into mature osteoblasts. A critical issue for these engrafted cells is to be fed by oxygen and nutrients: the transient absence of a vascular network upon implantation is a major challenge for cells to survive in the site of implantation, and different strategies can be followed to promote cell survival under poor oxygen and nutrient supply and to promote rapid vascularization of the defect area. These strategies involve the use of scaffolds designed to create the appropriate micro-environment for cells to survive, proliferate, and differentiate in vitro and in vivo. Hydrogels are an eclectic class of materials that can be easily cellularized and provide effective, minimally invasive approaches to fill bone defects and favor bone tissue regeneration. Furthermore, by playing on their composition and processing, it is possible to obtain biocompatible systems with adequate chemical, biological, and mechanical properties. However, only a good combination of scaffold and cells, possibly with the aid of incorporated growth factors, can lead to successful results in bone regeneration. This review presents the strategies used to design cellularized hydrogel-based systems for bone regeneration, identifying the key parameters of the many different micro-environments created within hydrogels.


Author(s):  
María Verónica Cuevas-González ◽  
Fernando Suaste-Olmos ◽  
Juan Carlos Cuevas-González ◽  
Marco Antonio Álvarez-Pérez

Recently, the 3D spheroid cell culture application has been extensively used in the treatment of bone defects. A wide variety of methodologies have been used, which has made the comparison of results complex. Therefore, this systematic review has two aims: (i) to perform an analysis focused on the role of 3D spheroid cell culture in bone regeneration strategies; and (ii) address the main challenges in clinical application. A search of the following keywords "3D cell culture", "spheroid", and "bone regeneration" was carried out in the PubMed, Scopus, and ScienceDirect databases and limited to the years 2010-2020. Studies were included if their primary objective was the behavior of cell aggregates to formed spheroids structures by different 3D cell culture techniques focused on the regeneration of bone tissue. To address the risk of bias for in vitro studies, the United States national toxicology program tool was applied, and descriptive statistics of the data were performed, with the SPSS V.22 program. A total of 16 studies were included, which met the established criteria corresponding to in vitro and in vitro/in vivo studies; most of these studies used stem cells for the 3D cell spheroids. The most often methods used for the 3D formation were low adherence surface and rotational methods, moreover, mesenchymal stem cells were the cell line most frequently used because of their regenerative potential in the field of bone tissue engineering. Although the advances in research on the potential use of 3D spheroids in bone regeneration have made great strides, the constant innovation in cell spheroid formation methodologies means that clinical application remains in the future as strategy for 3D tissue bioprinting.


2019 ◽  
Vol 1 (3) ◽  
pp. 112-123
Author(s):  
Rohith Kumar R. ◽  
Sangeetha Ashok Kumar ◽  
K. Periyasami Bhuvana

The present study endeavors in the preparation and characterization of semi crystalline 45S5 bioglass (BG) (SiO2-CaO-P2O5) through sol gel process. Dry press mold technique was used in the preparation porous BG tablets to examine the bioactivity through invitro studies. The synthesized BG powder was subjected to structural, morphological and mechanical characterization and the bioactivity was examined in vitro by immersing the BG tablet in the Simulated Body Fluid (SBF) solution. XRD pattern and the SEM micrographs revealed the semi crystalline nature of BG with spherical morphology. The elemental analysis confirms the presence of vital constituents required for Bone regeneration (Calcium, Phosphorous, Silica, and Sodium). The surface characterization of BG tablet reveals the pores structure of average pore size of 240nm which contributed to the high surface activity resulting in formation of carbonated hydroxy apatite (HCAP) when immersed in SBF. The disintegration studies denoted the stabilization period was after 48 of immersion of BG tablets in SBF solution. The compressive strength measurement of the tablet also reveals the higher mechanical stability.


2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.


2020 ◽  
Vol 9 (1) ◽  
pp. 1059-1079
Author(s):  
Fei Xing ◽  
Changchun Zhou ◽  
Didi Hui ◽  
Colin Du ◽  
Lina Wu ◽  
...  

AbstractHyaluronic acid (HA) is widely distributed in the human body, and it is heavily involved in many physiological functions such as tissue hydration, wound repair, and cell migration. In recent years, HA and its derivatives have been widely used as advanced bioactive polymers for bone regeneration. Many medical products containing HA have been developed because this natural polymer has been proven to be nontoxic, noninflammatory, biodegradable, and biocompatible. Moreover, HA-based composite scaffolds have shown good potential for promoting osteogenesis and mineralization. Recently, many HA-based biomaterials have been fabricated for bone regeneration by combining with electrospinning and 3D printing technology. In this review, the polymer structures, processing, properties, and applications in bone tissue engineering are summarized. The challenges and prospects of HA polymers are also discussed.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 252
Author(s):  
Henni Setia Ningsih ◽  
Leonhard Tannesia ◽  
Hsiang-Ho Chen ◽  
Shao-Ju Shih

Mesoporous beta tricalcium phosphate (β-TCP) has recently attracted significant interest as an artificial bone tissue in orthopedics. However, a scalable process is required to meet future demands. Spray drying is one of the potential synthesis methods owing to its low cost and scalable production. In this study, various mesoporous β-TCP powders were calcined in the range of 800 to 1100 °C, with particle sizes ranging from ~0.3 to ~1.8 μm, specific surface areas from ~16 to ~64 m2/g, and average pore sizes of 3 nm. Except for the 800 °C calcined powder, the other β-TCP powders (calcination temperatures of 900, 1000, and 1100 °C) exhibited no cytotoxicity. These results indicate that spray-dried mesoporous β-TCP powders were obtained. Finally, the corresponding formation mechanisms are discussed.


1995 ◽  
Vol 34 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Suthummar Choksakulnimitr ◽  
Sada Masuda ◽  
Hideaki Tokuda ◽  
Yoshinobu Takakura ◽  
Mitsuru Hashida

2021 ◽  
Vol 22 (2) ◽  
pp. 475
Author(s):  
Parastoo Memarian ◽  
Francesco Sartor ◽  
Enrico Bernardo ◽  
Hamada Elsayed ◽  
Batur Ercan ◽  
...  

Carbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR. Biocompatibility analyses through 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH) activity, hemolysis assay, and Ames test demonstrated excellent biocompatibility of both materials. A significant increase in the extracellular alkaline phosphatase (ALP) activity and expression of runt-related transcription factor (RUNX), ALP, osterix (OSX), and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes was observed in C-Bio scaffolds compared to those without carbon (Bio). Scanning electron microscopy (SEM) demonstrated excellent cell attachment on both material surfaces; however, the cellular layer on C-Bio fibers exhibited an apparent secretome activity. Based on our findings, graphene can improve cell adhesion, growth, and osteogenic differentiation of cAD-MSCs in vitro. This study proposed carbon as an additive for a novel three-dimensional (3D)-printable biocompatible scaffold which could become the key structural material for bone tissue reconstruction.


Sign in / Sign up

Export Citation Format

Share Document