Magnetic tetraethylenepentamine-functionalized graphene oxide to prepare new methyl rich bisphenol-based soluble and heat-resistant polyamide ether nanocomposites: Synthesis and characterization

2020 ◽  
pp. 089270572093914
Author(s):  
Hassan Moghanian ◽  
Akbar Mobinikhaledi ◽  
Fatemeh Hossein-Abadi ◽  
Shirin Faridi

The new magnetic and heat-resistant polyamide ether (PAE)/graphene oxide (GO) nanocomposites were prepared by blending PAE with modified GO. Furthermore, a novel PAE containing flexible ether, methyl, and triphenylmethane moiety in the main chain of PAE was prepared by direct polycondensation reaction of a diamine and 4,4′-(butane-1,4-diylbis(oxy))dibenzoic acid (9). The prepared PAE was characterized using various techniques. The obtained PAEs were readily soluble in various aprotic polar solvents at room temperature. The incorporation of bulky aryl pendant groups and flexible ether linkage into the backbones of polyamide may provide beneficial effects for solubility, as this approach produces a separate chain of the polymer, which makes weaker of hydrogen bonds. GO, which synthesized by the Hummer method, was modified with tetraethylenepentamine (GO-TEPA) and sequentially magnetized with Fe3O4 nanoparticles via chemical coprecipitation (GO-TEPA@Fe3O4). The PAE/GO/TEPA@Fe3O4 nanocomposite films, PAE/GO-TEPA@Fe3O4, were also synthesized as a heat-resistant and superparamagnetic nanocomposites, which were characterized using different analyses, such as field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray, thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Fourier transform infrared techniques. TGA of nanocomposites exhibit higher degradation temperature than that of neat PAE, which is an indication of high levels of interfacial interaction and dispersion.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2386
Author(s):  
Na Zhou ◽  
Jing Li ◽  
Shaoxia Wang ◽  
Xuming Zhuang ◽  
Shouqing Ni ◽  
...  

In this work, gold and bismuth bimetallic nanoparticles decorated L-cysteine functionalized graphene oxide nanocomposites (Au-BiNPs/SH-GO) were prepared and applied to selective detection of Fe(III) in lake and seawater samples by modifying onto glassy carbon electrodes. Bimetallic nanoparticles have various excellent properties and better catalytic properties because of the unique synergistic effect between metals. The modified electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Under optimized conditions, current peak intensity increased linearly with increasing Fe(III) concentration over the range of 0.2–50 μM and a detection limit of 0.07 μM (S/N = 3). The Au-BiNPs/SH-GO/GCE was used for the determination of Fe(III) in lake and seawater samples with recoveries ranged from 90 to 103%. Those satisfactory results revealed the potential application of the Au-BiNPs/SH-GO electrochemical sensor for heavy metals detection in environmental monitoring.


2019 ◽  
Vol 814 ◽  
pp. 112-117
Author(s):  
Kun Yan Wang

The graphene oxide (GO) was prepared by the Hummers method, and then functionalized by 3-glycidoxypropyltrimethoxysilane. Functionalized graphene oxide (FGO) was characterized by using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG). The results show that 3-glycidoxypropyltrimethoxysilane reacted with hydroxyl group of graphene oxide. The FGO have a sheet-like structure with wrinkles. The shifts of XRD peaks to low degree for FGO indicate the occurrence of intercalation of 3-glycidoxypropyltrimethoxysilane and as well as increase in the thermal stability.


2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2012 ◽  
Vol 31 (1) ◽  
pp. 79
Author(s):  
Khalil Faghihi ◽  
Masoumeh Soleimani ◽  
Shabnam Nezami ◽  
Meisam Shabanian

Two new samples of poly(amide-imide)-montmorillonite reinforced nanocomposites containing N-trimellitylimido-L-valine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-trimellitylimido-L-valine (3) with 4,4′-diaminodiphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films (5a) and (5b) with 10 and 20 % silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy,  thermogravimetric analysis (TGA) and water uptake measurements.


2021 ◽  
pp. 089270572110514
Author(s):  
Himanshu V Madhad ◽  
Dilip V Vasava

Over the years, various types of techniques have been used for the synthesis of nanocomposites. In this work, melamine-based polyamide (PA) was synthesized using a one-pot polycondensation method under mild conditions. carboxyl graphene (CG)/PA nanocomposites (CGMPA) were prepared by CG nanofiller loadings of 1, 3, and 5 wt.% via delamination/adsorption approach. The prepared CGMPA nanocomposites were characterized using different analyses, such as Fourier transform infrared techniques (FTIR), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), differential scanning calorimetric (DSC), and thermogravimetric analysis (TGA). The effects of the CG on the thermal properties of the CGMPA nanocomposites were significant. The results showed that the melting temperature (Tm) of neat PA and CGMPA were increased from 378°C to 393°C suggested better dispersion of CG in PA matrix. The decomposition temperature of PA was increased from 451°C to 463°C in CGMPA nanocomposites indicates the better thermal stability of PA matrix by addition of CG.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Tiehu Li ◽  
Yingde Cui ◽  
Minghao Yi ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing graphene oxide (GO) (0.5, 1, 2, and 3 wt%) or graphene (0.5, 1, 2, and 3 wt%) were prepared using a solvent casting method. The scanning electron microscopy results indicated that the dispersion of GO throughout the film matrix was better than that of graphene. The successful formation of new hydrogen bonds between the film matrix and GO was confirmed through the use of Fourier-transform infrared spectroscopy. The tensile strength, elastic modulus, and initial degradation temperature of the films increased, whereas the total soluble mass, water vapor permeability, oxygen permeability, and light transmittance decreased following GO or graphene incorporation. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris-based blend films in the packaging field.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


2001 ◽  
Vol 73 (4) ◽  
pp. 525-532 ◽  
Author(s):  
MELLATIE R. FINISIE ◽  
ATCHE JOSUÉ ◽  
VALFREDO T. FÁVERE ◽  
MAURO C. M. LARANJEIRA

Bioceramic composites were obtained from chitosan and hydroxyapatite pastes synthesized at physiological temperature according to two different syntheses approaches. Usual analytical techniques (X-ray diffraction analysis, Fourier transformed infrared spectroscopy, Thermo gravimetric analysis, Scanning electron microscopy, X-ray dispersive energy analysis and Porosimetry) were employed to characterize the resulting material. The aim of this investigation was to study the bioceramic properties of the pastes with non-decaying behavior from chitosan-hydroxyapatite composites. Chitosan, which also forms a water-insoluble gel in the presence of calcium ions, and has been reported to have pharmacologically beneficial effects on osteoconductivity, was added to the solid phase of the hydroxyapatite powder. The properties exhibited by the chitosan-hydroxyapatite composites were characteristic of bioceramics applied as bone substitutes. Hydroxyapatite contents ranging from 85 to 98% (w/w) resulted in suitable bioceramic composites for bone regeneration, since they showed a non-decaying behavior, good mechanical properties and suitable pore sizes.


2020 ◽  
Vol 855 ◽  
pp. 160-165
Author(s):  
Deril Ristiani ◽  
Niken Sylvia Puspitasari ◽  
Retno Asih ◽  
Fahmi Astuti ◽  
Malik Anjelh Baqiya ◽  
...  

Na-doped reduced graphene oxide (Na-rGO) was prepared by wet mixing process of the reduced graphene oxide (rGO) in NaOH solution. The results showed that the rGO doped with Na ions can increase its magnetization approximately 2 times greater than that in rGO without doping. Saturation magnetization (Ms) for rGO and Na-rGO samples are 0.017 emu/g and 0.037 emu/g, respectively. The increasing value of magnetization is suggested to be due to defect presented in the Na-rGO samples. Both samples, rGO and Na-rGO, have the similar XRD (X-ray Diffraction) spectra that is marked by two characteristic diffraction peaks of rGO, which are associated with [002] and [10] planes, followed by the increasing inter-planar distance in Na-rGO samples which might be due to Na ions intercalation into rGO sheets, confirmed by the energy-dispersive X-ray (EDX) result revealing the presence of Na atoms in rGO.


Sign in / Sign up

Export Citation Format

Share Document