Structure and optic properties of the nanocomposites based on polypropylene and amorphous silica nanoparticles

2021 ◽  
pp. 089270572110288
Author(s):  
MA Ramazanov ◽  
HA Shirinova ◽  
SG Nuriyeva ◽  
MA Jafarov ◽  
MR Hasanova

The structure and optic properties of the transparent PP+SiO2 nanocomposites with a relatively high refractive index and enhanced luminescence properties were investigated. X-ray analysis, Fourier-transform infrared (FTIR), Visible-ultraviolet, and photoluminescence spectroscopic methods were used for investigation. The XRD analysis indicated that the fraction of the amorphous phase of the polycrystalline polymer decreases with the introduction of SiO2 nanoparticles. Even though SiO2 nanoparticle is amorphous itself, they play the role of the crystallinity centers in the polymer matrix, and the degree of crystallinity increases in polymer nanocomposites. According to UV-vis spectroscopic analysis that, with the increasing of the concentration of SiO2 nanoparticles distributed in the polymer matrix, the absorption intensity of the samples also increases. It was explained by the hyperchromic effect which is related to raising the optical density of the polymer by introducing the filler particles (SiO2). It was calculated bandgap energy and refractive index on the base of the UV spectra of samples. It has been found that at low concentrations of amorphous silica nanoparticles, the polymer nanocomposite retains its transparency despite having a relatively high refractive index (1.96). Furthermore, the photoluminescence (PL) spectrum of nanocomposites was investigated depending on filler concentration. It was clear that the intensity of the PL spectrums increases with the increase of the filler concentration that is explained by the raising of the luminescence centers in the nanocomposite material. These luminescence centers are oxygen-deficit centers in the spatial structure of the amorphous silica nanoparticles.

Author(s):  
Sylvie Ribeiro ◽  
Tânia Ribeiro ◽  
Clarisse Ribeiro ◽  
Daniela M. Correia ◽  
João P. Sequeira Farinha ◽  
...  

Poly(vinylidene fluoride) nanocomposites processed with different morphologies, such as porous and non-porous films and fibres, have been prepared with silica nanoparticles (SiNPs) of varying diameter (17, 100, 160 and 300 nm) which in turn have encapsulated perylenediimide (PDI), a fluorescent molecule. Structural, morphological, optical, thermal, and mechanical properties of the nanocomposites, with SiNP filler concentration up to 16 wt% were evaluated. Further, cytotoxicity and cell proliferation studies were performed. All SiNPs are negatively charged independently of the pH and more stable from pH 5 upwards. The SiNPs introduction within the polymer matrix increases the contact angle independently of the nanoparticle diameters and the smallest ones (17 nm) improve the PVDF Young modulus from 0.94 ± 0.04 GPa for the pristine polymer film to 1.05 ± 0.06 GPa. Varying filler diameter, physico-chemical, thermal and mechanical properties of the polymer matrix were not significantly affected. Finally, the SiNPs inclusion does not induce cytotoxicity in murine myoblasts (C2C12) after 72 h of contact and proliferation studies reveal that the prepared composites represent a suitable platform for tissue engineering applications, as they allow to combine the biocompatibility and piezoelectricity of the polymer with the possible functionalization and drug encapsulation and release of the SiNP.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 933 ◽  
Author(s):  
Sylvie Ribeiro ◽  
Tânia Ribeiro ◽  
Clarisse Ribeiro ◽  
Daniela Correia ◽  
José Farinha ◽  
...  

Poly(vinylidene fluoride) nanocomposites processed with different morphologies, such as porous and non-porous films and fibres, have been prepared with silica nanoparticles (SiNPs) of varying diameter (17, 100, 160 and 300 nm), which in turn have encapsulated perylenediimide (PDI), a fluorescent molecule. The structural, morphological, optical, thermal, and mechanical properties of the nanocomposites, with SiNP filler concentration up to 16 wt %, were evaluated. Furthermore, cytotoxicity and cell proliferation studies were performed. All SiNPs are negatively charged independently of the pH and more stable from pH 5 upwards. The introduction of SiNPs within the polymer matrix increases the contact angle independently of the nanoparticle diameter. Moreover, the smallest ones (17 nm) also improve the PVDF Young’s modulus. The filler diameter, physico-chemical, thermal and mechanical properties of the polymer matrix were not significantly affected. Finally, the SiNPs’ inclusion does not induce cytotoxicity in murine myoblasts (C2C12) after 72 h of contact and proliferation studies reveal that the prepared composites represent a suitable platform for tissue engineering applications, as they allow us to combine the biocompatibility and piezoelectricity of the polymer with the possible functionalization and drug encapsulation and release of the SiNP.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 514 ◽  
Author(s):  
Makoto Takafuji ◽  
Maino Kajiwara ◽  
Nanami Hano ◽  
Yutaka Kuwahara ◽  
Hirotaka Ihara

Optical materials with high refractive index (n) have been rapidly improved because of urgent demands imposed by the development of advanced photonic and electronic devices such as solar cells, light emitting diodes (LED and Organic LED), optical lenses and filters, anti-reflection films, and optical adhesives. One successful method to obtain high refractive index materials is the blending of metal oxide nanoparticles such as TiO2 and ZrO2 with high n values of 2.1–2.7 into conventional polymers. However, these nanoparticles have a tendency to agglomerate by themselves in a conventional polymer matrix, due to the strong attractive forces between them. Therefore, there is a limitation in the blending amount of inorganic nanoparticles. In this paper, various hydrophilic polymers such as poly(N-hydroxyl acrylamide) (pHEAAm), poly(vinyl alcohol), poly(ethylene glycol), and poly(acrylic acid) were examined for preparation of high refractive index film based on titanium oxide nanoparticle (TiNP) dispersed polymer composite. The hydrogen bonding sites in these hydrophilic polymers would improve the dispersibility of inorganic nanoparticles in the polymer matrix. As a result, pHEAAm exhibited higher compatibility with titanium oxide nanoparticles (TiNPs) than other water-soluble polymers. Transparent hybrid films were prepared by mixing pHEAAm with TiNPs and drop casting the mixture onto a glass plate. The refractive indices of the films were in good agreement with calculated values. The compatibility of TiNPs with pHEAAm was dependent on the surface characteristics of TiNPs. TiNPs with the highest observed compatibility could be hybridized with pHEAAm at concentrations of up to 90 wt%, and the refractive index of the corresponding film reached 1.90. The high compatibility of TiNPs with pHEAAm may be related to the hydrophilicity and amide and hydroxyl moieties of pHEAAm, which cause hydrogen bond formation on the TiO2 surface. The obtained thin film was slightly yellow due to the color of the original TiNP dispersion; however, the transmittance of the film was higher than 80% in the wavelength range from 480 to 900 nm.


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1648
Author(s):  
Muaffaq M. Nofal ◽  
Shujahadeen B. Aziz ◽  
Jihad M. Hadi ◽  
Wrya O. Karim ◽  
Elham M. A. Dannoun ◽  
...  

In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet–visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc’s method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.


Author(s):  
Zhiyou Li ◽  
Zao Yi ◽  
Tinting Liu ◽  
Li Liu ◽  
Xifang Chen ◽  
...  

In this paper, we designed a three-band narrowband perfect absorber based on Bulk Dirac semimetallic (BDS) metamaterials. The absorber consists of a hollow Dirac semimetallic layer above, a gold layer...


2021 ◽  
Author(s):  
Nicole Ziegenbalg ◽  
Ruth Lohwasser ◽  
Giovanni D’Andola ◽  
Torben Adermann ◽  
Johannes Christopher Brendel

Polyethersulfones are an interesting class of polymers for industrial applications due to their unusual properties such as a high refractive index, flame-retardant properties, high temperature and chemical resistance. The common...


Sign in / Sign up

Export Citation Format

Share Document