A new resin with improved processability and thermal stability

2016 ◽  
Vol 29 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Liping Sheng ◽  
Jingcheng Zeng ◽  
Suli Xing ◽  
Changping Yin ◽  
Jinshui Yang ◽  
...  

To maintain outstanding thermal stability, amino- and hydroxyl-containing phthalonitrile monomers, 4-(4-aminophenoxy)-phthalonitrile (APN) and 4-(4-hydroxyphenoxy)-phthalonitrile (HPN) were selected and synthesized. Their structures were confirmed by proton nuclear magnetic resonance spectroscopy. Their curing polymers were characterized by Fourier transform infrared spectroscopy. The self-catalytic curing behaviors of the monomers were investigated by differential scanning calorimetry (DSC) at different heating rates. From the results, APN exhibits a higher curing temperature, while HPN exhibits a longer curing time. Then, mixtures of these monomers were investigated by DSC. The result shows that the 50/50 mixture exhibits different autocatalytic behaviors: the curing temperature is lower than that of APN and the curing time of the mixture is shorter than that of HPN. Furthermore, thermogravimetric analysis shows that the polymer from the mixture exhibits higher temperature of 5% weight loss ( T5%) and char yield value at 800°C than those of the polymers from each monomer. All these results indicate that the new mixture resin exhibits improved processability with excellent thermal stability, attributed to the synergistic effect between similar monomers; the synergistic effect optimizes the cure reaction kinetics and promotes cross-linking reactions, thereby producing an excellent resin; this approach is a new method for improving the processability without sacrificing thermal stability.

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 644 ◽  
Author(s):  
Farimah Tikhani ◽  
Shahab Moghari ◽  
Maryam Jouyandeh ◽  
Fouad Laoutid ◽  
Henri Vahabi ◽  
...  

For the first time, nano-scale aluminum hypophosphite (AlPO2) was simply obtained in a two-step milling process and applied in preparation of epoxy nanocomposites varying concentration (0.1, 0.3, and 0.5 wt.% based on resin weight). Studying the cure kinetics and thermal stability of these nanocomposites would pave the way toward the design of high-performance nanocomposites for special applications. Scanning electron microscopy (SEM) and transmittance electron microscopy (TEM) revealed AlPO2 particles having domains less than 60 nm with high potential for agglomeration. Excellent (at heating rate of 5 °C/min) and Good (at heating rates of 10, 15 and 20 °C/min) cure states were detected for nanocomposites under nonisothermal differential scanning calorimetry (DSC). While the dimensionless curing temperature interval (ΔT*) was almost equal for epoxy/AlPO2 nanocomposites, dimensionless heat release (ΔH*) changed by densification of polymeric network. Quantitative cure analysis based on isoconversional Friedman and Kissinger methods gave rise to the kinetic parameters such as activation energy and the order of reaction as well as frequency factor. Variation of glass transition temperature (Tg) was monitored to explain the molecular interaction in the system, where Tg increased from 73.2 °C for neat epoxy to just 79.5 °C for the system containing 0.1 wt.% AlPO2. Moreover, thermogravimetric analysis (TGA) showed that nanocomposites were thermally stable.


2017 ◽  
Vol 30 (4) ◽  
pp. 475-479 ◽  
Author(s):  
Wenxuan Wei ◽  
Li Yang ◽  
Guanjun Chang

Indole-based poly(ether sulfone)s (PINESs), as novel high-performance polymers, have been obtained by the condensation polymerization of 4-hydroxyindole and hydroquinone with activated difluoro monomers via a catalyst-free nucleophilic substitution reaction. The structures of the polymers are characterized by means of Fourier transform infrared and proton nuclear magnetic resonance spectroscopy, and the results show good agreement with the proposed structures. Differential scanning calorimetry and thermogravimetric analysis measurements exhibit that polymers possess high glass transition temperature ( Tgs > 245°C) and good thermal stability with high decomposition temperatures ( Tds > 440°C). In addition, due to their special structure, PINESs are endowed with significantly strong photonic luminescence in N, N-dimethylformamide.


2016 ◽  
Vol 29 (10) ◽  
pp. 1139-1147 ◽  
Author(s):  
Zi Sang ◽  
Tiantian Feng ◽  
Wenbin Liu ◽  
Jun Wang ◽  
Mehdi Derradji

A new series of aniline and aniline-mixed tetrafunctional fluorene-based oxazine monomers were synthesized using 2,7-hydroxy-9,9-bis-(4-hydroxyphenyl) fluorene, paraformaldehyde, and primary amines (including aniline or aniline mixed with n-butylamine or n-octylamine composition). Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy were used to characterize the structure of the monomers. The copolymers were obtained by adding the monomers into a typical monofunctional polybenzoxazine (phenol-aniline-based benzoxazine). Differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis were performed to study the thermal properties of the copolymers. The copolymers exhibited high glass transition temperature values (164–201°C). A good thermal stability was also obtained with a 5% weight loss temperature over 355°C and high char yields at 800°C (42–50%).


2020 ◽  
Vol 32 (7) ◽  
pp. 823-834
Author(s):  
Lei Zhang ◽  
Jiale Mao ◽  
Shuang Wang ◽  
Yiting Zheng

A series of main-chain benzoxazine oligomers with different methyl substitutions are successfully synthesized. Chemical structures are analyzed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Effects of methyl substitutions on chemical shifts of protons in oxazine ring and thermal properties, including glass transition temperature, thermal stability, and char yield, are discussed. The influences of methyl substitutions on different positions are demonstrated: (i) substitution on phenols induces obvious increase in curing temperature while substitution on amine does not show apparent impact; (ii) substitution at different positions results in T g variation, following the sequence of none-substitution > substitution at end-capping > substitution on diamines in main-chain > substitution on bisphenols in main-chain; and (iii) substitution at end-capping would cause apparent deterioration in thermal stability while substitution on diamines in main-chain would benefit thermal stability and char yield. Experimental results and related explanations are provided in detail.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 500-509
Author(s):  
Dayong Zhang ◽  
Xiaohui Liu ◽  
Xuefeng Bai ◽  
Yinyin Zhang ◽  
Gang Wang ◽  
...  

AbstractA new type of phthalonitrile-etherified resole resin (PNR) was synthesized from resole resin and 4-nitrophthalonitrile. The differential scanning calorimetry results showed that the curing temperature of PNR is lower than that of phthalonitrile resin. Excellent thermal stability and bonding properties were obtained after curing at 220°C. TGA showed that in air, the temperature of 5% weight loss (T5%) of the cured PNR was 446°C, approximately 41°C higher than that of resole resin (RS), and the char yield at 800°C increased from 4% for RS to 33% for PNR. The shear strengths of PNR at room temperature and high temperature were increased by 8% and 133%, respectively, over those of RS, and after aging at 350°C for 2 h, these values were increased by 262% and 198%, respectively, over those of RS. Its excellent curing behavior, heat resistance and high bonding strength show that PNR can be used as a high temperature-resistant adhesive.


2018 ◽  
Vol 5 (8) ◽  
pp. 180566 ◽  
Author(s):  
Jie Xu ◽  
Jiayao Yang ◽  
Xiaohuan Liu ◽  
Hengxu Wang ◽  
Jingjie Zhang ◽  
...  

At present, the disadvantage of powder epoxy adhesive is the limited application area. In order to widen the application range of powder epoxy adhesive from heat-resistant substrates (such as metals) to heat-sensitive substrates (such as plastic products, cardboard and wood), it is necessary to decrease the curing temperature. In this article, a series of fast-curing powder epoxy adhesives were prepared by the melt blending method with bisphenol A epoxy resin (E-20), hexamethylenetetramine (HMTA) as a curing agent and 2-methylimidazole (2-MI) as an accelerant. The structure and properties of the E-20/HMTA/2-MI systems were characterized by Fourier transform infrared, thermogravimetric analysis, dynamic mechanical analyser and differential scanning calorimetry (DSC). 2-MI added into the E-20/HMTA systems can simultaneously enhance toughness, tensile strength, glass transition temperature ( T g ) and thermal stability in comparison with the E-20/HMTA systems. The best mechanical properties were obtained at 100/8/0.6 weight ratio of the E-20/HMTA/2-MI systems. DSC experiments revealed that the exothermic peak of the E-20/HMTA/2-MI system was about 55°C lower than that of the E-20/HMTA system. The activation energy of the cure reaction was determined by both Kissinger's and Ozawa's methods at any heating rates. The activation energy and pre-exponential factor were about 100.3 kJ mol −1 and 3.57 × 10 11 s −1 , respectively. According to the KAS method, the curing time of the E-20/HMTA/2-MI systems was predicted by evaluating the relationship between temperature and curing time.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1252
Author(s):  
Rodolfo M. Moraes ◽  
Layde T. Carvalho ◽  
Gizelda M. Alves ◽  
Simone F. Medeiros ◽  
Elodie Bourgeat-Lami ◽  
...  

Well-defined amphiphilic, biocompatible and partially biodegradable, thermo-responsive poly(N-vinylcaprolactam)-b-poly(ε-caprolactone) (PNVCL-b-PCL) block copolymers were synthesized by combining reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerizations (ROP). Poly(N-vinylcaprolactam) containing xanthate and hydroxyl end groups (X–PNVCL–OH) was first synthesized by RAFT/macromolecular design by the interchange of xanthates (RAFT/MADIX) polymerization of NVCL mediated by a chain transfer agent containing a hydroxyl function. The xanthate-end group was then removed from PNVCL by a radical-induced process. Finally, the hydroxyl end-capped PNVCL homopolymer was used as a macroinitiator in the ROP of ε-caprolactone (ε-CL) to obtain PNVCL-b-PCL block copolymers. These (co)polymers were characterized by Size Exclusion Chromatography (SEC), Fourier-Transform Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance spectroscopy (1H NMR), UV–vis and Differential Scanning Calorimetry (DSC) measurements. The critical micelle concentration (CMC) of the block copolymers in aqueous solution measured by the fluorescence probe technique decreased with increasing the length of the hydrophobic block. However, dynamic light scattering (DLS) demonstrated that the size of the micelles increased with increasing the proportion of hydrophobic segments. The morphology observed by cryo-TEM demonstrated that the micelles have a pointed-oval-shape. UV–vis and DLS analyses showed that these block copolymers have a temperature-responsive behavior with a lower critical solution temperature (LCST) that could be tuned by varying the block copolymer composition.


2020 ◽  
Vol 29 (1) ◽  
pp. 29-39
Author(s):  
Tang Xin ◽  
Hu Xuzeng ◽  
Wan Haodong

A novel amphoteric polymer TH-1 was synthesized using the monomers of 2-acrylamido-2-methylpropane sulfonic acid, acrylic acid, acrylamide, and cationic monomer through radical copolymerization as filtrate loss reducer in oil well cementing. Optimal synthesis conditions of TH-1 were obtained by an orthogonal experiment. The composition of copolymer (TH-1) was characterized by Fourier-transform infrared spectrum and proton nuclear magnetic resonance spectroscopy. The thermal stability of the synthesized copolymer was tested by thermogravimetric analysis. The fluid loss (FL) control and thickening performance of cement slurry incorporating TH-1 were evaluated at different temperatures. The filtration reduction mechanism of TH-1 was finally discussed. Results suggest that the amphoteric polymer is the target product polymerized by all the monomers, which presents excellent filtrate reduction property, high thermal stability, and strong saline tolerance under 200°C. The amphoteric polymer TH-1 includes cationic and anionic group in a molecule structure, which can adsorb firmly onto the surface of cement particles through electrostatic attraction and form adsorption membrane of viscoelastic polymer. In this way, compact cement filter cakes are formed, thereby efficiently reducing the FL.


2012 ◽  
Vol 24 (8) ◽  
pp. 673-682 ◽  
Author(s):  
Ying-Gang Jia ◽  
Jian-She Hu ◽  
Dan Li ◽  
Qing-Bao Meng ◽  
Xia Zhang

The synthesis of new chiral monomer 4-(menthyloxyacetoxy- benzoyloxy)biphenyl-4′-(2-(undec-10-e noyloxy)ethoxy)benzoate (ML), crosslinking agent 4-(undec-10-enoyloxy)biphenyl-4′-(2-(undec-10-enoyloxy)ethoxy)benzoate (CA), and liquid crystal polymer networks (E1−E5) containing menthyl group is presented. Their chemical structures and phase behavior were characterized with Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR), elemental analyses, polarizing optical microscopy, differential scanning calorimetry, thermogravimetric analysis (TGA), and X-ray diffraction. The selective reflection of light for ML was investigated with ultraviolet/visible/near infrared (UV/Visible/NIR). By inserting a flexible spacer between the mesogenic core and the terminal menthyl groups, MLcould form mesophase and show a chiral smectic C phase, cholesteric phase and cubic blue phase. CA displayed a smectic A phase and nematic phase. The polymer networks containing less than 12 mol% of the crosslinking units showed reversible cholesteric phase transition, wide mesophase temperature range, and excellent thermal stability. With increasing the content of crosslinking unit, the corresponding Tg increased, the Ti decreased, and the mesophase temperature range narrowed for E1−E5. TGA showed that the Td(5%) was greater than 330°C for E1−E5.


2018 ◽  
Vol 31 (7) ◽  
pp. 820-830 ◽  
Author(s):  
Haifeng Wang ◽  
Zhenjiang Zhang ◽  
Puguang Ji ◽  
Xiaoyan Yu ◽  
Kimiyoshi Naito ◽  
...  

A novel vinylpyridine-based phthalonitrile monomer, 2,6-bis[3-(3,4-dicyanophenoxy)styryl]pyridine (BDSP), was resoundingly produced by a nucleophilic substitution reaction of 2,6-bis(3-hydroxystyryl)pyridine with 4-nitrophthalonitrile in the presence of potassium carbonate. The chemical structure of the synthesized BDSP was confirmed by proton (1H) and carbon (12C) nuclear magnetic resonance (NMR) as well as Fourier transform infrared (FTIR) analysis. The curing behavior of BDSP was investigated by FTIR and differential scanning calorimetry (DSC) analyses. The resin showed a low complex viscosity in the wide processing window between the monomer melting temperature and the curing temperature of the polymer, as discovered by rheological analysis. In addition, the properties of the polymer were studied by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Based on the test results, the BDSP polymer demonstrated superior processing performance, excellent thermal stability, outstanding mechanical properties, and low water uptake, and these advanced performance characteristics are critical to many fields.


Sign in / Sign up

Export Citation Format

Share Document