Machining of titanium alloys for medical application - a review

Author(s):  
António Festas ◽  
António Ramos ◽  
João Paulo Davim

Titanium alloys for their characteristics have acquired a prominent position in numerous industrial applications. Due to its properties, such as high resistance to corrosion, reduced density, high specific strength, and low Young’s modulus, titanium alloys became indispensable as a biomaterial with high use in medical devices, with special emphasis in the area of orthopedics. Problems associated with its manufacturing by conventional machining processes, such as milling, turning, and drilling are well known and studied. Its low thermal conductivity, high chemical reactivity, high hardness at high temperatures make it classified as difficult to machine material. Despite the already extensive knowledge about machining titanium alloys problems, and the constant technological development to overcome them, it is not yet possible to machine this material like other metals. This work is based on research and review papers from Scopus and Scholar from 2010 to 2020 and addresses the main issues related to the machining of titanium alloys used in medical devices manufacturing and current solutions adopted to solve them. From the research consulted it was possible to conclude that it is consensual that for milling, turning, and helical milling cutting speed can reach up to 100 m/min and up to 40 m/min in drilling. As for feed rate, up to 0.1 mm/tooth for milling and helical milling and up to 0.3 mm/rev for turning and 0.1 mm/rev for drilling. Also, that Minimum Quantity Lubrication is a valid and efficient solution to mitigate titanium alloys machining problems.

2015 ◽  
Vol 656-657 ◽  
pp. 243-250 ◽  
Author(s):  
Renann Pereira Gama ◽  
Marcos Valério Ribeiro

The increase of world requirements for improved products joined to growing competition between companies in the global market makes the same seek processes that ensure lower costs allied to high productivity and high quality product. Therefore, the great industrial and technological development has been increased the search for machining processes that promote, for example, high performance as regards the chip removal, less tool wear, failure and reduced impact on the environment. Regarding nickel-based superalloys, they have an extremely important role in the aeronautical and automotive industries among others. The nickel-based superalloy studied is the Nimonic 80A, hard machine material that has high mechanical strength and corrosion resistance on higher temperatures. The objective of this report is to study the influence of the application of cutting fluids in turning and the machining parameters in order to achieve high performance and optimization of machining this alloy. This one was machined using various machining parameters: cutting speed, feed rate, cutting depth, Minimum Quantity fluid (MQF), and Fluid abundant. After turning chip samples were obtained, was measured the surface roughness, volume of chip removed, cutting length and macro structural, some analyzes were performed and of lifetime of the tools were used in order to detect possible wear, as well as, microstructural observation of the chips by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).On this report, we can observe the behavior of the materials and tools in the two cooling conditions used, and also, the impacts of the parameter variations in the surface finish, on the structure of the material and performance of the tools in respect chip removal regarding volume removed and machined length. Application by MQF was promising, but there is an abundant beyond the traditional application.


2020 ◽  
Vol 66 (7-8) ◽  
pp. 467-478 ◽  
Author(s):  
Anastasios Tzotzis ◽  
César García-Hernández ◽  
José-Luis Huertas-Talón ◽  
Panagiotis Kyratsis

Hard turning is one of the most used machining processes in industrial applications. This paper researches critical aspects that influence the machining process of AISI-4140 to develop a prediction model for the resultant machining force-induced during AISI-4140 hard turning, based on finite element (FE) modelling. A total of 27 turning simulation runs were carried out in order to investigate the relationship between three key parameters (cutting speed, feed rate, and depth of cut) and their effect on machining force components. The acquired numerical results were compared to experimental ones for verification purposes. Additionally, a mathematical model was established according to statistical methodologies such as the response surface methodology (RSM) and the analysis of variance (ANOVA). The plurality of the simulations yielded results in high conformity with the experimental values of the main machining force and its components. Specifically, the resultant cutting force agreement exceeded 90 % in many tests. Moreover, the verification of the adequacy of the statistical model led to an accuracy of 8.8 %.


2014 ◽  
Vol 887-888 ◽  
pp. 1191-1194 ◽  
Author(s):  
Chang Yi Liu

Thermal energy sources have been applied for softening the difficult-to-machine material when it is combined with conventional machining processes. Cutting forces has been reduced during the process. To investigate the plastic deformation property of workpiece materials heated by thermal sources, and its influence to the cutting forces, the analytical model of orthogonal cutting is established. The impact of cutting speed and initial temperature of the shear banding to the cutting forces are taken account of, based on adiabatic shear banding model and Johnson-Cook material constitutive law. The shear banding average shear stress failure criteria has been proposed to decide the fracture between workpiece and chip. Simulation has been carried out and compared with experimental data of laser-heat assisted titanium alloy milling, showing good agreement.


2015 ◽  
Vol 766-767 ◽  
pp. 681-686 ◽  
Author(s):  
J. Nithyanandam ◽  
K. Palanikumar ◽  
Sushil Laldas

Titanium alloys are attractive materials used in different engineering applications, due to its excellent combination of properties such as high strength to weight ratio, good corrosion resistance and high temperature applicability. They are also being used increasingly in chemical process, automotive, biomedical and nuclear plant. When machining of Titanium alloys with traditional tools the tool wear rate high. Because of high chemical reactivity and low modulus of elasticity resulting high cutting temperature and strong adhesion between the tool and work piece materials. The poly crystalline diamond (PCD) cutting tool is used for the turning experiment. The turning parameters for the experimental work are cutting speed, feed, nose radius, and depth of cut. From the results, analysis of the influences of the individual parameters on the surface roughness have been carried out. Fuzzy modeling technique is effectively used to predict the surface roughness in the machining of titanium alloy.


2010 ◽  
Vol 443 ◽  
pp. 371-375 ◽  
Author(s):  
Gusri Akhyar Ibrahim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd. Ghani

Machining of titanium alloys as aerospace material that has extremely strength to weight ratio and resistant to corrosion at high-elevated temperature, become more interested topic. However, titanium alloys have low thermal conductivity, relative low modulus elasticity and high chemical reactivity with many cutting tool materials. The turning parameters evaluated are cutting speed (55, 75, 95 m/min), feed rate (0.15, 0.25, 0.35 mm/rev), depth of cut (0.10, 0.15, 0.20 mm) and tool grade of CVD carbide tool. The results that pattern of tool life progression is rapidly increase at the initial stage. It was due to small contact area between the cutting tool and the workpiece. At the first step of machining, the chip welded at the cutting edge but some chip removed away from the cutting edge. Wear mechanism produced are abrasive wear, adhesive, flaking, chipping at the cutting edge and coating delamination.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5011
Author(s):  
Cécile Escaich ◽  
Zhongde Shi ◽  
Luc Baron ◽  
Marek Balazinski

The TiC particles in titanium metal matrix composites (TiMMCs) make them difficult to machine. As a specific MMC, it is legitimate to wonder if the cutting mechanisms of TiMMCs are the same as or similar to those of MMCs. For this purpose, the tool wear mechanisms for turning, milling, and grinding are reviewed in this paper and compared with those for other MMCs. In addition, the chip formation and morphology, the material removal mechanism and surface quality are discussed for the different machining processes and examined thoroughly. Comparisons of the machining mechanisms between the TiMMCs and MMCs indicate that the findings for other MMCs should not be taken for granted for TiMMCs for the machining processes reviewed. The increase in cutting speed leads to a decrease in roughness value during grinding and an increase of the tool life during turning. Unconventional machining such as laser-assisted turning is effective to increase tool life. Under certain conditions, a “wear shield” was observed during the early stages of tool wear during turning, thereby increasing tool life considerably. The studies carried out on milling showed that the cutting parameters affecting surface roughness and tool wear are dependent on the tool material. The high temperatures and high shears that occur during machining lead to microstructural changes in the workpiece during grinding, and in the chips during turning. The adiabatic shear band (ASB) of the chips is the seat of the sub-grains’ formation. Finally, the cutting speed and lubrication influenced dust emission during turning but more studies are needed to validate this finding. For the milling or grinding, there are major areas to be considered for thoroughly understanding the machining behavior of TiMMCs (tool wear mechanisms, chip formation, dust emission, etc.).


Author(s):  
Yun Chen ◽  
Huaizhong Li ◽  
Jun Wang

Titanium and its alloys are difficult to machine due to their high chemical reactivity with tool materials and low thermal conductivity. Chip segmentation caused by the thermoplastic instability is always observed in titanium machining processes, which leads to varied cutting forces and chip thickness, etc. This paper presents an analytical modelling approach for cutting forces in near-orthogonal cutting of titanium alloy Ti6Al4V. The catastrophic shear instability in the primary shear plane is assumed as a semi-static process. An analytical approach is used to evaluate chip thicknesses and forces in the near-orthogonal cutting process. The shear flow stress of the material is modelled by using the Johnson–Cook constitutive material law where the strain hardening, strain rate sensitivity and thermal softening behaviours are coupled. The thermal equations with non-uniform heat partitions along the tool–chip interface are solved by a finite difference method. The model prediction is verified with experimental data, where a good agreement in terms of the average cutting forces and chip thickness is shown. A comparison of the predicted temperatures with published data obtained by using the finite element method is also presented.


2005 ◽  
Vol 291-292 ◽  
pp. 115-120 ◽  
Author(s):  
Fei Hu Zhang ◽  
J.C. Gui ◽  
Yi Zhi Liu ◽  
Hua Li Zhang

Nano cemented carbide is a new style cutter material. Because its grain size is very small, it is superior to common cemented carbide in properties, such as high hardness, fracture toughness, flexural strength and higher abrasion resistance. As a cutter material, nano cemented carbide has wide use. In this paper, nano cemented carbide tool was ground with ELID technology, and the cutting properties of nano cemented carbide were studied, and the difference in cutting properties among the ultra-fine grain, common cemented carbide and nano cemented carbide was analyzed under the same condition. Results imply that the ground surface roughness of nano cemented carbide is obviously lower than that of common cemented carbide, and the tool life of nano cemented carbide is 5-7 times longer than that of common cemented carbide at low cutting speed.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


2011 ◽  
Vol 264-265 ◽  
pp. 1154-1159
Author(s):  
Anayet Ullah Patwari ◽  
A.K.M. Nurul Amin ◽  
S. Alam

Titanium alloys are being widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. Surface roughness is one of the most important requirements in machining of Titanium alloys. This paper describes mathematically the effect of cutting parameters on Surface roughness in end milling of Ti6Al4V. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The developed RSM is coupled as a fitness function with genetic algorithm to predict the optimum cutting conditions leading to the least surface roughness value. MATLAB 7.0 toolbox for GA is used to develop GA program. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to achieve the minimum surface roughness value.


Sign in / Sign up

Export Citation Format

Share Document