Hydrodynamics of larval fish quick turning: A computational study

Author(s):  
Jialei Song ◽  
Yong Zhong ◽  
Haoxiang Luo ◽  
Yang Ding ◽  
Ruxu Du

A three-dimensional fluid–body interaction model was established to study the hydrodynamics of larval fish at a quick start with a turning angle of approximately 80°. The bending curves of the larval fish were attained by extracting the middle line of fish snapshots from a previously published paper. The fluid–body interaction was implemented to empower the self-propelling function of the larval fish. In this study, the swimmer’s kinematics of the body as well as hydrodynamics at preparatory and propulsive stages of the larval fish were extensively analysed. It shows that during the preparatory stage, the larval fish produces a significant force against the escaping direction. Nevertheless, this force leads to a large turning torque, helping to accomplish a quick turning. During the propulsive stage, the force increases quickly in the escape direction, resulting in a large velocity for the escape. The characteristics of body motion and the flow field are consistent with the previous observation on adult fish: the bimodal mode on velocity and tangential acceleration and three jets of fluids. In addition, the research also reveals that the forces generated at anterior and posterior parts of the larval fish generally point to the opposite directions at both preparatory and propulsive strokes of C-start.

2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


2017 ◽  
Vol 284 (1852) ◽  
pp. 20170359 ◽  
Author(s):  
Arjun Nair ◽  
Christy Nguyen ◽  
Matthew J. McHenry

An escape response is a rapid manoeuvre used by prey to evade predators. Performing this manoeuvre at greater speed, in a favourable direction, or from a longer distance have been hypothesized to enhance the survival of prey, but these ideas are difficult to test experimentally. We examined how prey survival depends on escape kinematics through a novel combination of experimentation and mathematical modelling. This approach focused on zebrafish ( Danio rerio ) larvae under predation by adults and juveniles of the same species. High-speed three-dimensional kinematics were used to track the body position of prey and predator and to determine the probability of behavioural actions by both fish. These measurements provided the basis for an agent-based probabilistic model that simulated the trajectories of the animals. Predictions of survivorship by this model were found by Monte Carlo simulations to agree with our observations and we examined how these predictions varied by changing individual model parameters. Contrary to expectation, we found that survival may not be improved by increasing the speed or altering the direction of the escape. Rather, zebrafish larvae operate with sufficiently high locomotor performance due to the relatively slow approach and limited range of suction feeding by fish predators. We did find that survival was enhanced when prey responded from a greater distance. This is an ability that depends on the capacity of the visual and lateral line systems to detect a looming threat. Therefore, performance in sensing, and not locomotion, is decisive for improving the survival of larval fish prey. These results offer a framework for understanding the evolution of predator–prey strategy that may inform prey survival in a broad diversity of animals.


2004 ◽  
Vol 14 (08) ◽  
pp. 2525-2553 ◽  
Author(s):  
IGOR N. GASHENENKO ◽  
PETER H. RICHTER

The general Euler-Poisson problem of rigid body motion is investigated. We study the three-dimensional algebraic level surfaces of the first integrals, and their topological bifurcations. The main result of this article is an analytical and qualitatively complete description of the projections of these integral manifolds to the body-fixed space of angular velocities. We classify the possible types of these invariant sets and analyze the dependence of their topology on the parameters of the body and the constants of the first integrals. Particular emphasis is given to the enveloping surfaces of the sets of admissible angular velocities. Their pre-images in the reduced phase space induce a Heegaard splitting which lends itself for a general choice of complete Poincaré surfaces of section, irrespective of whether or not the system is integrable.


Author(s):  
X. Liu ◽  
J. S. Marshall

A computational study is reported that examines the transient growth of three-dimensional flow features for nominally parallel vortex-cylinder interaction problems. We consider a helical vortex with small-amplitude perturbations that is advected onto a circular cylinder whose axis is parallel to the nominal vortex axis. The study assesses the applicability of the two-dimensional flow assumption for parallel vortex-body interaction problems in which the body impinges on the vortex core. The computations are performed using an unstructured finite-volume method for an incompressible flow, with periodic boundary conditions along the cylinder axis. Growth of three-dimensional flow features is quantified by use of a proper-orthogonal decomposition of the Fourier-transformed velocity and vorticity fields in the cylinder azimuthal and axial directions. The interaction is examined for different axial wavelengths and amplitudes of the initial helical waves on the vortex core, and the results for cylinder force are compared to the two-dimensional results. The degree of perturbation amplification as the vortex approaches the cylinder is quantified and shown to be mostly dependent on the dominant axial wavenumber of the perturbation. The perturbation amplification is observed to be greatest for perturbations with axial wavelength of about 1.5 times the cylinder diameter.


2016 ◽  
Vol 3 (6) ◽  
pp. 160230 ◽  
Author(s):  
Jialei Song ◽  
Bret W. Tobalske ◽  
Donald R. Powers ◽  
Tyson L. Hedrick ◽  
Haoxiang Luo

We present a computational study of flapping-wing aerodynamics of a calliope hummingbird ( Selasphorus calliope ) during fast forward flight. Three-dimensional wing kinematics were incorporated into the model by extracting time-dependent wing position from high-speed videos of the bird flying in a wind tunnel at 8.3 m s −1 . The advance ratio, i.e. the ratio between flight speed and average wingtip speed, is around one. An immersed-boundary method was used to simulate flow around the wings and bird body. The result shows that both downstroke and upstroke in a wingbeat cycle produce significant thrust for the bird to overcome drag on the body, and such thrust production comes at price of negative lift induced during upstroke. This feature might be shared with bats, while being distinct from insects and other birds, including closely related swifts.


2011 ◽  
Vol 88 (4) ◽  
pp. 385-408 ◽  
Author(s):  
P. Yu ◽  
K. S. Yeo ◽  
D. Shyam Sundar ◽  
S. J. Ang

2011 ◽  
Vol 679 ◽  
pp. 616-627 ◽  
Author(s):  
NIKOLAY KUZNETSOV ◽  
OLEG MOTYGIN

We consider a spectral problem that describes the time-harmonic small-amplitude motion of the mechanical system that consists of a three-dimensional water layer of constant depth and a body (either surface-piercing or totally submerged), freely floating in it. This coupled boundary-value problem contains a spectral parameter – the frequency of oscillations – in the boundary conditions as well as in the equations governing the body motion. It is proved that the total energy of the water motion is finite and the equipartition of energy of the whole system is established. Under certain restrictions on body's geometry the problem is proved to have only a trivial solution for sufficiently large values of the frequency. The uniqueness frequencies are estimated from below.


Author(s):  
Y.-M. Scolan ◽  
A. A. Korobkin

The water entry of a three-dimensional smooth body into initially calm water is examined. The body can move freely in its 6 d.f. and may also change its shape over time. During the early stage of penetration, the shape of the body is approximated by a surface of double curvature and the radii of curvature may vary over time. Hydrodynamic loads are calculated by the Wagner theory. It is shown that the water entry problem with arbitrary kinematics of the body motion, can be reduced to the vertical entry problem with a modified vertical displacement of the body and an elliptic region of contact between the liquid and the body surface. Low pressure occurrence is determined; this occurrence can precede the appearance of cavitation effects. Hydrodynamic forces are analysed for a rigid ellipsoid entering the water with 3 d.f. Experimental results with an oblique impact of elliptic paraboloid confirm the theoretical findings. The theoretical developments are detailed in this paper, while an application of the model is described in electronic supplementary materials.


Author(s):  
Frank T. Smith ◽  
Phillip L. Wilson

Solid–solid and solid–fluid impacts and bouncing are the concern here. A theoretical study is presented on fluid–body interaction in which the motion of the body and the fluid influence each other nonlinearly. There could also be many bodies involved. The clashing refers to solid–solid impacts arising from fluid–body interaction in a channel, while the skimming refers to another area where a thin body impacts obliquely upon a fluid surface. Bouncing usually then follows in both areas. The main new contribution concerns the influences of thickness and camber which lead to a different and more general form of clashing and hence bouncing.


Author(s):  
Ying Wang ◽  
Yuanyuan Huang ◽  
Junjie Xu ◽  
Defu Bao

Existing motion capture technology can efficiently track whole-body motion and be applied to many areas of the body. This whole-body interaction design has gained the attention of many researchers. However, few scholars have studied its suitability for elderly users. We were interested in exercise-based whole-body interactive games, which can provide mental and physical exercise for elderly users. We used heuristic evaluation to measure participants’ actions during exergame tasks and analyzed preference differences between elderly and younger users through the distribution of actions in four dimensions. We found that age affected the actions performed by users in exergame tasks. We discuss the mental model of elderly users during the process of performing these tasks and put forward some suggestions for interactive actions. This model and these suggestions theoretically have guiding significance for the research and application of exergame design for elderly users and may help designers develop more effective exergames or other whole-body interaction interfaces suitable for elderly users.


Sign in / Sign up

Export Citation Format

Share Document