Analytical and experimental investigation of deformation in constrained groove pressing process

Author(s):  
Farshad Nazari ◽  
Mohammad Honarpisheh

Constrained groove pressing process is a severe plastic deformation method, which can improve the properties of a metal sheet. The purpose of this research is to investigate the effect of deformation behavior and effective strain on the constrained groove pressed sheet properties. For this aim, deformation procedure and effective strain were investigated based on analytical relations and deformation geometry. Formation in the constrained groove pressing process was divided into the bending, stretching, and pressing sections, and the respective contribution of each in the formation procedure was evaluated. Then, the effect of main sections on the formation force, mechanical properties, and microstructure of constrained groove pressed sheets was determined by an experimental study. According to the analytical results, about 41.4% of the formation procedure occurs in the pressing section, creating 70% more effective strain than stretching section. Thus, the pressing section has a significant effect on the properties of constrained groove pressed sheets. The pressing section, due to more effective strain than the stretching section, creates 36% more yield strength, 14.6% more surface hardness, 37.6% more homogeneity and 22.6% smaller grain size. But, compared to the stretching section, the pressing section reduces elongation about 42.8%. So, to produce sheets with high ultimate strength and good formability, using the constrained groove pressing process in the stretching section is more effective.

2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


2010 ◽  
Vol 667-669 ◽  
pp. 749-754
Author(s):  
Igor V. Alexandrov ◽  
Roza G. Chembarisova

A grain size is known to be one of the factors which define mechanical properties of metallic materials. At the same time the mechanisms which regulate the deformation behavior of bulk ultrafine-grained (UFG) metals produced by the severe plastic deformation method are still a subject for intensive study and fixed ambiguously. The report presents the developed model and the results of its application for kinetic modeling of the deformation behavior of coarse-grained (CG) and UFG Ti. Modeling has been carried out considering the possible contribution of dislocation slip and ageing. Conclusions about the role of the investigated mechanisms in the appearance of the peculiarities of the deformation behavior of CG and UFG Ti have been made.


2019 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Assiss. Prof. Dr. Sabiha Mahdi Mahdi ◽  
Dr. Firas Abd K. Abd K.

Aim: The aimed study was to evaluate the influence of silver nitrate on surfacehardness and tensile strength of acrylic resins.Materials and methods: A total of 60 specimens were made from heat polymerizingresins. Two mechanical tests were utilized (surface hardness and tensile strength)and 4 experimental groups according to the concentration of silver nitrate used.The specimens without the use of silver nitrate were considered as control. Fortensile strength, all specimens were subjected to force till fracture. For surfacehardness, the specimens were tested via a durometer hardness tester. Allspecimens data were analyzed via ANOVA and Tukey tests.Results: The addition of silver nitrate to acrylic resins reduced significantly thetensile strength. Statistically, highly significant differences were found among allgroups (P≤0.001). Also, the difference between control and experimental groupswas highly significant (P≤0.001). For surface hardness, the silver nitrate improvedthe surface hardness of acrylics. Highly significant differences were statisticallyobserved between control and 900 ppm group (P≤0.001); and among all groups(P≤0.001)with exception that no significant differences between control and150ppm; and between 150ppm and 900ppm groups(P>0.05).Conclusion: The addition of silver nitrate to acrylics reduced significantly the tensilestrength and improved slightly the surface hardness.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3755
Author(s):  
Štefan Gašpár ◽  
Tomáš Coranič ◽  
Ján Majerník ◽  
Jozef Husár ◽  
Lucia Knapčíková ◽  
...  

The resulting quality of castings indicates the correlation of the design of the mold inlet system and the setting of technological parameters of casting. In this study, the influence of design solutions of the inlet system in a pressure mold on the properties of Al-Si castings was analyzed by computer modelling and subsequently verified experimentally. In the process of computer simulation, the design solutions of the inlet system, the mode of filling the mold depending on the formation of the casting and the homogeneity of the casting represented by the formation of shrinkages were assessed. In the experimental part, homogeneity was monitored by X-ray analysis by evaluating the integrity of the casting and the presence of pores. Mechanical properties such as permanent deformation and surface hardness of castings were determined experimentally, depending on the height of the inlet notch. The height of the inlet notch has been shown to be a key factor, significantly influencing the properties of the die-cast parts and influencing the speed and filling mode of the mold cavity. At the same time, a significant correlation between porosity and mechanical properties of castings is demonstrated. With the increasing share of porosity, the values of permanent deformation of castings increased. It is shown that the surface hardness of castings does not depend on the integrity of the castings but on the degree of subcooling of the melt in contact with the mold and the formation of a fine-grained structure in the peripheral zones of the casting.


2009 ◽  
Vol 472 (1-2) ◽  
pp. 546-550 ◽  
Author(s):  
Wen-Fu Ho ◽  
Chang-Hung Pan ◽  
Shih-Ching Wu ◽  
Hsueh-Chuan Hsu

2013 ◽  
Vol 341 ◽  
pp. 169-180 ◽  
Author(s):  
A.M. Abdul-Kader ◽  
Y.A. El-Gendy ◽  
Awad A. Al-Rashdi ◽  
A.M. Salem

The effect of ion beam bombardment on the optical and mechanical properties of ultra-high molecular weight polyethylene (UHMWPE) was investigated. UHMWPE polymer samples were bombarded with 150 keV N2ions under vacuum at room temperature to high fluences ranging from 1x1016to 2x1017ions cm-2. The untreated as well as treated samples were investigated by ultraviolet-visible (UV-Vis) spectrophotometer and Vickers micro-hardness techniques. The direct and indirect optical band gap decreased from 2.9 and 1.65 eV for pristine sample to 1.7 and 1 eV for those bombarded with N2ion beam at the highest fluence, respectively. With increasing ion fluence, an increase in the number of carbon atoms per conjugation length, N and number of carbon atoms per cluster, M in a formed cluster were observed. A significant improvement in surface hardness was obtained by increasing the ion fluence.


2020 ◽  
Vol 37 (3) ◽  
pp. 259-265
Author(s):  
Kang Da ◽  
Wang Yongliang ◽  
Zhong Jingjun ◽  
Liu Zihao

AbstractThe blade deformation caused by aerodynamic and centrifugal loads during operating makes blade configurations different from their stationary shape. Based on the load incremental approach, a novel pre-deformation method for cold blade shape is provided in order to compensate blade deformation under running. Effect of nonlinear blade stiffness is considered by updating stiffness matrix in response to the variation of blade configuration when calculating deformations. The pre-deformation procedure is iterated till a converged cold blade shape is obtained. The proposed pre-deformation method is applied to a transonic compressor rotor. Effect of load conditions on blade pre-deformation is also analyzed. The results show that the pre-deformation method is easy to implement with fast convergence speed. Neither the aerodynamic load nor centrifugal load can be neglected in blade pre-deformation.


2008 ◽  
Vol 584-586 ◽  
pp. 182-187
Author(s):  
Lilia Kurmanaeva ◽  
Yulia Ivanisenko ◽  
J. Markmann ◽  
Ruslan Valiev ◽  
Hans Jorg Fecht

Investigations of mechanical properties of nanocrystalline (nc) materials are still in interest of materials science, because they offer wide application as structural materials thanks to their outstanding mechanical properties. NC materials demonstrate superior hardness and strength as compared with their coarse grained counterparts, but very often they possess a limited ductility or show low uniform elongation due to poor strain hardening ability. Here, we present the results of investigation of the microstructure and mechanical properties of nc Pd and Pd-x%Ag (x=20, 60) alloys. The initially coarse grained Pd-x% Ag samples were processed by high pressure torsion, which resulted in formation of homogenous ultrafine grain structure. The increase of Ag contents led to the decrease of the resulted grain size and change in deformation behavior, because of decreasing of stacking fault energy (SFE). The samples with larger Ag contents demonstrated the higher values of hardness, yield stress and ultimate stress. Remarkably the uniform elongation had also increased with increase of strength.


Sign in / Sign up

Export Citation Format

Share Document