Numerical analysis of propeller loading with a coupling RANS and potential approach

Author(s):  
Wenyu Sun ◽  
Li Yang ◽  
Jinfang Wei ◽  
Jingpu Chen ◽  
Guofu Huang

In this paper, we present a coupling potential and Reynolds-averaged Navier–Stokes (RANS) approach for the analysis of propeller loading and propulsion performance at self-propulsion condition. There is a presentation of a combination of unsteady RANS method for ship flow with free surface taking into account by volume of fluid method and Lifting Line Model for propeller operating behind ship. An intensified coupling strategy is proposed to simulate the propeller effect in the ship wake. The effective wake is re-examined through the iterations, and there is a presentation of the spatial distribution of propeller forces. Propeller unsteady loading of KCS test case is predicted by flow field from both Full RANS and the Coupling method and compared to experiment results. A circulation-based analysis is made to scrutinize the spatial distribution of propeller loading. The simulation results prove that the coupling method can estimate propeller’s loading and effect on averaged flow field. Ultimately, the coupling method is applied to design an optimal propeller accounting for hull–propeller interaction, which shows its potential for further integrated optimization application.

Author(s):  
Emanuele Guidotti ◽  
Mark G. Turner

A multistage frequency domain (Nonlinear Harmonic) Navier-Stokes unsteady flow solver has been used to analyze the flow field in the MIT (rotor/rotor) aspirated counter-rotating compressor. The numerical accuracy and computational efficiency of the Nonlinear Harmonic method implemented in Numeca’s Fine/Turbo CFD code has been demonstrated by comparing predictions with experimental data and nonlinear time-accurate solutions for the test case. The comparison is good, especially considering the big savings in time with respect to a time accurate simulation. An imposed inlet boundary condition takes into account the flow change due to the IGV (not simulated in the computational model). Details of the flow field are presented and physical explanations are provided. Also, suggestions and recommendations on the use of the Nonlinear Harmonic method are provided. From this work it can be concluded that the development of efficient frequency domain approaches enables routine unsteady flow predictions to be used in the design of modern turbomachinery.


Author(s):  
Patrick Queutey ◽  
Gan Bo Deng ◽  
Emmanuel Guilmineau ◽  
Francesco Salvatore

The paper compares the development of the coupling between a viscous Reynolds-averaged Navier-Stokes (RANSE) method and an inviscid Boundary Element method (BEM) with application to the prediction of the propulsive performance of a propelled ship. The BEM computational model is implemented into the PRO-INS code developed by CNR-INSEAN. It is based on a boundary integral formulation for marine propellers in arbitrary onset non-cavitating and cavitating flow conditions. The RANSE approach is based on the unstructured finite-volume flow solver ISIS-CFD. An essential feature for full RANSE simulations with the ISIS-CFD code developed by ECN-CNRS is in the use of a sliding grid technique to simulate the real propeller rotating behind a ship hull. The STREAMLINE tanker and propeller are proposed as validation test case. Full RANSE simulations are performed for design speed only, while hybrid RANSE/BEM self-propulsion computations are performed for a speed range. Both computations are compared with experimental data and show good agreement for ship resistance and for propeller thrust and torque.


Author(s):  
Roberto Biollo ◽  
Ernesto Benini

The progress of numerical methods and computing facilities has led to using Computational Fluid Dynamics (CFD) as a current tool for designing components of gas turbine engines. It is known, however, that a sophisticated numerical model is required to well reproduce the many complex flow phenomena which characterize compression systems, such as shock waves and their interactions with boundary layers and tip clearance flows. In this work, the flow field inside the NASA Rotor 37, a well known test case representative of complex three-dimensional viscous flow structures in transonic bladings, was simulated using a commercial CFD code based on the 3-D Reynolds-averaged Navier-Stokes equations. In order to improve the accuracy of predictions, different aspects of the numerical model were analyzed; in particular, an attempt was made to understand the influence of grid topology, number of nodes and their distribution, turbulence model, and discretization scheme of numerical solution on the accuracy of computed results. Existing experimental data were used to assess the quality of the solutions. The obtainment of a good agreement between computed and measured performance maps and downstream profiles was clearly shown. Also, detailed comparisons with experimental results indicated that the overall features of the three-dimensional shock structure, the shock-boundary layer interaction, and the wake development can be calculated very well in the numerical approach for all the operating conditions. The possibility for a numerical model to better understand the aerodynamic behaviour of existing transonic compressors and to help the design of new configurations was demonstrated. It was also pointed out that the development of an accurate model requires the knowledge of both the physical phenomena place within the flow field and the features of the code which model them.


1997 ◽  
Vol 119 (3) ◽  
pp. 408-414 ◽  
Author(s):  
Mihai Arghir ◽  
Jean Freˆne

The paper presents a theoretical investigation of the flow field inside a 50 percent eccentricity, synchronously whirling, annular seal. The numerical results are obtained using a specific rotordynamic method based on the perturbed form of the averaged full Navier-Stokes equations. Experimental data for this seal are provided by Morrison et al. (1994, 1995) and Morrison and Winslow (1995). The calculated flow field (stator pressures and shear stresses, distributed forces, velocity and turbulent kinetic energy distributions) is in good qualitative agreement with the measured one. It is evidenced that the particular form of the pressure field is due to a great pressure recovery effect in the exit section. This problem could be used as a test case for annular seal flows, but the high eccentricity is at the limit of a perturbation-based method.


2020 ◽  
pp. 1-14
Author(s):  
Cong Liu ◽  
Jianhua Wang ◽  
Decheng Wan

In the present work, a Reynolds-Averaged Navier-Stokes (RANS)-overset method is used to numerically investigate self-propulsion and turning circle maneuver in waves for a container ship. A computational fluid dynamics (CFD) solver naoe-FOAM-SJTU is used for the numerical computations of the fully appended Duisburg Test Case ship model. Overset grids are used to handle the motions of the ship hull appended with the propeller and the rudder. Open source toolbox waves2Foam is used to prevent wave reflection in the computational domain. The current numerical method is validated by comparing the ship speed in the self-propulsion case between CFD and Experimental Fluid Dynamics (EFD). Predicted ship 6-DOF motions, hydrodynamic forces, free surfaces, and inflow of the propeller are presented. The propulsion characteristic is mainly studied. Assuming the thrust identification method works even in unsteady conditions, the wake fraction and propulsion efficiency are discussed. The effect of orbital motion of water particle and ship motion on the propulsion performance are identified. In conclusion, the present RANS-overset method is a reliable approach to directly simulate self-propulsion and turning circle maneuver in waves.


2021 ◽  
pp. 146808742110131
Author(s):  
Xiaohang Fang ◽  
Li Shen ◽  
Christopher Willman ◽  
Rachel Magnanon ◽  
Giuseppe Virelli ◽  
...  

In this article, different manifold reduction techniques are implemented for the post-processing of Particle Image Velocimetry (PIV) images from a Spark Ignition Direct Injection (SIDI) engine. The methods are proposed to help make a more objective comparison between Reynolds-averaged Navier-Stokes (RANS) simulations and PIV experiments when Cycle-to-Cycle Variations (CCV) are present in the flow field. The two different methods used here are based on Singular Value Decomposition (SVD) principles where Proper Orthogonal Decomposition (POD) and Kernel Principal Component Analysis (KPCA) are used for representing linear and non-linear manifold reduction techniques. To the authors’ best knowledge, this is the first time a non-linear manifold reduction technique, such as KPCA, has ever been used in the study of in-cylinder flow fields. Both qualitative and quantitative studies are given to show the capability of each method in validating the simulation and incorporating CCV for each engine cycle. Traditional Relevance Index (RI) and two other previously developed novel indexes: the Weighted Relevance Index (WRI) and the Weighted Magnitude Index (WMI), are used for the quantitative study. The results indicate that both POD and KPCA show improvements in capturing the main flow field features compared to ensemble-averaged PIV experimental data and single cycle experimental flow fields while capturing CCV. Both methods present similar quantitative accuracy when using the three indexes. However, challenges were highlighted in the POD method for the selection of the number of POD modes needed for a representative reconstruction. When the flow field region presents a Gaussian distribution, the KPCA method is seen to provide a more objective numerical process as the reconstructed flow field will see convergence with an increasing number of modes due to its usage of Gaussian properties. No additional criterion is needed to determine how to reconstruct the main flow field feature. Using KPCA can, therefore, reduce the amount of analysis needed in the process of extracting the main flow field while incorporating CCV.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


Author(s):  
Domenico Borello ◽  
Giovanni Delibra ◽  
Franco Rispoli

In this paper we present an innovative Partially Averaged Navier Stokes (PANS) approach for the simulation of turbomachinery flows. The elliptic relaxation k-ε-ζ-f model was used as baseline Unsteady Reynolds Averaged Navier Stokes (URANS) model for the derivation of the PANS formulation. The well established T-FlowS unstructured finite volume in-house code was used for the computations. A preliminary assessment of the developed formulation was carried out on a 2D hill flow that represents a very demanding test case for turbulence models. The turbomachinery flow here investigated reproduces the experimental campaign carried out at Virginia Tech on a linear compressor cascade with tip leakage. Their measurements were used for comparisons with numerical results. The predictive capabilities of the model were assessed through the analysis of the flow field. Then an investigation of the blade passage, where experiments were not available, was carried out to detect the main loss sources.


2016 ◽  
Vol 13 (04) ◽  
pp. 1641012
Author(s):  
Qingjie Meng ◽  
Decheng Wan

The unsteady viscous flow around a 12000TEU ship model entering the Third Set of Panama Locks with different eccentricity is simulated by solving the unsteady Reynolds averaged Navier–Stokes (RANS) equations in combination with the [Formula: see text]SST turbulence model. Overset grid technology is utilized to maintain grid orthogonality and the effects of the free surface are taken into account. The hydrodynamic forces, vertical displacement as well as surface pressure distribution are predicted and analyzed. First, a benchmark test case is designed to validate the capability of the present methods in the prediction of the viscous flow around the ship when maneuvering into the lock. The accumulation of water in front of the ship during entry into a lock is noticed. A set of systematic computations with different eccentricity are then carried out to examine the effect of eccentricity on the ship–lock hydrodynamic interaction.


2013 ◽  
Vol 291-294 ◽  
pp. 1981-1984
Author(s):  
Zhang Xia Guo ◽  
Yu Tian Pan ◽  
Yong Cun Wang ◽  
Hai Yan Zhang

Gunpowder was released in an instant when the pill fly out of the shell during the firing, and then formed a complicated flow fields about the muzzle when the gas expanded sharply. Using the 2 d axisymmetric Navier-Stokes equation combined with single equation turbulent model to conduct the numerical simulation of the process of gunpowder gass evacuating out of the shell without muzzle regardless of the pill’s movement. The numerical simulation result was identical with the experimental. Then simulated the evacuating process of gunpowder gass of an artillery with muzzle brake. The result showed complicated wave structure of the flow fields with the muzzle brake and analysed the influence of muzzle brake to the gass flow field distribution.


Sign in / Sign up

Export Citation Format

Share Document