Taguchi optimization of surface roughness in the turning of Hastelloy C22 super alloy using cryogenically treated ceramic inserts

Author(s):  
Sıtkı Akincioğlu ◽  
Hasan Gökkaya ◽  
Gülşah Akincioğlu ◽  
Meltem A Karataş

Cryogenic treatment has been used in recent years to improve the performance of cutting tools. This study evaluated the machinability of a nickel–molybdenum-based super alloy using cryogenically treated (–80 ℃ and –145 ℃) ceramic inserts under dry turning conditions. Three cutting speeds (350, 400, and 450 m/min), three feed rates (0.1, 0.2, and 0.3 mm/rev), and a 1-mm fixed cutting depth were used in the turning tests. Experiments were conducted using the Taguchi orthogonal array L27 design. The factors affecting the surface roughness (Ra) were determined via analysis of variance. The effect of cryogenic treatment type (shallow and deep), cutting speed, and feed rate on surface roughness was investigated. Results of the analysis determined that the feed rate was the major parameter that affected surface roughness and that the deep cryogenic treatment was more effective. The regression analysis confirmed that the experimental results and the predicted values were within the 95% confidence interval. The most effective parameter affecting the surface roughness was feed rate at a contribution of 57.9%. The contribution of the cutting tool type to the surface roughness was 28.5%. The results obtained showed that the surface roughness can be optimized for turning the Hastelloy c22 super alloy with the Taguchi method.

Author(s):  
Menderes Kam

This study investigated the effects of Deep Cryogenic Treatment (DCT) on machinability, hardness, and microstructure in dry turning process of AISI 4140 (48-51 HRc) tempered steels with ceramic cutting tools on the surface roughness (Ra). DCT process of steels has shown significant improvement in their mechanical properties. In this context, experiments were made with Taguchi L16 method and optimum values were determined. Three different values for each control factors as: different heat treated samples, cutting speeds (160, 200, 240, 280 m/min), feed rates (0.08, 0.12, 0.16, 0.20 mm/rev) were selected. As a result, the lowest Ra value was found to be 0.159 µm for the DCTT36 sample at a cutting speed of 240 m/min, a feed rate of 0.08 mm/rev. The optimum Ra value was the lowest for the DCTT36 sample compared to the other samples as 0.206 µm. The hardness values of the micro and macro were highest for the DCTT36 sample. Microstructural point of view Scanning Electron Microscopy (SEM) point of view, the DCCT36 sample showed that best results owing to its homogeneity. It was concluded that lower Ra values can be obtained with ceramic cutting tool in dry turning experiments according to the studies in the literature review. It is thought to be preferred as an alternative to cylindrical grinding process due to lower cost.


2018 ◽  
Vol 142 ◽  
pp. 03002
Author(s):  
Yunhai Jia ◽  
Lixin Zhu

Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.


2020 ◽  
Vol 17 (2) ◽  
pp. 961-966
Author(s):  
Allina Abdullah ◽  
Afiqah Azman ◽  
B. M. Khirulrizwan

This research outlines an experimental study to determine the optimum parameter of cutting tool for the best surface roughness (Ra) of Aluminum Alloy (AA) 6063. For the experiment in this research, cutting parameters such as cutting speed, depth of cut and feed rate are used to identify the effect of both cutting tools which are tungsten carbide and cermet towards the surface roughness (Ra) of material AA6063. The machining operation involved to cut the material is turning process by using Computer Numerical Control (CNC) Lathe machine. The experimental design was designed by Full Factorial. The experiment that had been conducted by the researcher is 33 with 2 replications. The total number of the experiments that had been run is 54 runs for each cutting tool. Thus, the total number of experiments for both cutting tools is 108 runs. ANOVA analysis had been analyzed to identify the significant factor that affect the Ra result. The significant factors that affect the Ra result of AA6063 are feed rate and cutting speed. The researcher used main effect plot to determine the factor that most influenced the surface roughness of AA6063, the optimum condition of surface roughness and the optimum parameter of cutting tool. The factor that most influenced the surface roughness of AA6063 is feed rate. The optimum condition of surface roughness is at the feed rate of 0.05 mm/rev, cutting speed of 600 rpm and depth of cut of 0.10 mm. While the optimum parameter of cutting tool is cermet insert with the lowest value of surface roughness (Ra) result which is 0.650 μm.


2010 ◽  
Vol 102-104 ◽  
pp. 653-657 ◽  
Author(s):  
Xu Hong Guo ◽  
Li Jun Teng ◽  
Wei Wang ◽  
Ting Ting Chen

In recent years, the machinability of magnesium alloy is concerned more and more by the public. In this paper, a study on the cutting properties of magnesium alloy AZ91D when dry turning with kentanium cutting tools is presented. It shows the cutting force measured by a data acquisition system which is made up of Kistler9257B piezoelectric crystal sensor dynamometer, Kistler5070A10100 charge amplifier and computer. The effect of cutting parameters on cutting force was studied, and the experimental formula was built. The tool wear and chip characteristics were observed with KYKY-EM3200 electron scanning microscope and EDAX PV9900 alpha ray spectrometer, while the surface roughness of the workpiece was measured with 2205 profilometer. Results showed that the cutting depth was the main influence factor on cutting force, followed by feed rate and cutting speed . The main form of tool wear showed to be diffusive wear and adhesive wear. The feed rate had the main influence on chip form and the workpiece surface roughness, cutting speed was less effective, the cutting depth was the least.


2014 ◽  
Vol 699 ◽  
pp. 198-203 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Aaron Yu Long ◽  
Md Ali Mohd Amran ◽  
Mohd Shahir Kasim ◽  
Abu Bakar Mohd Hadzley ◽  
...  

Polyetheretherketones (PEEK) has been widely used as biomaterial for trauma, orthopaedic and spinal implants. Component made from Polyetheretherketones generally required additional machining process for finishing which can be a problem especially to attain a good surface roughness and dimensional precision. This research attempts to optimize the machining and processing parameters (cutting speed, feed rate and depth of cut) for effectively machining Polyetheretherketones (PEEK) implant material using carbide cutting tools. Response Surface Methodology (RSM) technique was used to assess the effects of the parameters and their relations towards the surface roughness values. Based on the analysis results, the optimal machining parameters for the minimum surface roughness values were by using cutting speed of 5754 rpm, feed rate of 0.026 mm/tooth and 5.11 mm depth of cut (DOC).


2015 ◽  
Vol 13 ◽  
pp. 19-22 ◽  
Author(s):  
Gabriel Benga ◽  
Danut Savu ◽  
Adrian Olei

The paper presents the influence of various cutting regimes on the surface roughness, when a hardened bearing steel has been machined using both ceramic and PCBN cutting tools. There were used different cutting conditions varying cutting speed, feed rate and depth of cut in order to determine the influence of each cutting parameter on the surface finish.


2009 ◽  
Vol 62-64 ◽  
pp. 613-620 ◽  
Author(s):  
Ishaya Musa Dagwa

In this study, an attempt has been made to optimize cutting parameters (cutting speed, depth of cut, and feed rate) in conventional turning operations. A Taguchi orthogonal array (L933) was used in surface roughness optimization of a solid round bar of mild steel material. The experimental runs were randomized; two skilled machinists were involved in the turning operation using the same machining parameters. ANOVA analysis was performed to identify the percentage contribution of the factors affecting surface roughness during machining. The optimal cutting combination was determined by using the signal-to-noise ratio and the following results were obtained; speed (level 2) = 55.m/min, depth of cut (level 3) = 0.08mm, and feed rate (levels 3) = at 0.08mm/rev. A prediction of surface roughness was carried out using the optimal setting followed by a confirmatory test on the lathe. The result shows that the confirmatory runs compared favourably (96.44%) with the predicted surface roughness.


2014 ◽  
Vol 6 ◽  
pp. 859207 ◽  
Author(s):  
Zhang Huiping ◽  
Zhang Hongxia ◽  
Lai Yinan

Firstly, a single factor test of the surface roughness about tuning 300 M steel is done. According to the test results, it is direct to find the sequence of various factors affecting the surface roughness. Secondly, the orthogonal cutting experiment is carried out from which the primary and secondary influence factors affecting surface roughness are obtained: feed rate and corner radius are the main factors affecting surface roughness. The more the feed rate, the greater the surface roughness. In a certain cutting speed rang, the surface roughness is smaller. The influence of depth of cut to the surface roughness is small. Thirdly, according to the results of the orthogonal experiment, the prediction model of surface roughness is established by using regressing analysis method. Using MatLab software, the prediction mode is optimized and the significance test of the optimized model is done. It showed that the prediction model matched the experiment results. Finally, the surface residual stress test of turning 300 M steel is done and the residual stress of the surface and along the depth direction is measured.


Author(s):  
Adnan Calik ◽  

-In this study, the effects of cryogenic treatment on tool wear and surface roughness of tungsten carbide inserts coated with TiAlN were investigated as a function of cutting speed and feed rate. It is observed that the surface roughness increases with increased cutting speed, feed rate and also applied cryogenic processing. In other words, the effect of feed rate and cutting speed is very high on the surface roughness. On the other hand, the results showed that the cryogenic treatment is a non-effective process to enhance the wear resistance and tool life of inserts due to brittle region between coated layer and surface


2015 ◽  
Vol 220-221 ◽  
pp. 749-753 ◽  
Author(s):  
Murat Sarikaya ◽  
Abdulkadir Güllü

Haynes-25 alloy (also known as L-605 alloy) is extensively used in the applications of aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent properties. However, machining this alloy is more difficult compared to normal steel or even stainless one because of its characteristics of hardness and strength. This paper presents experimental investigation into machining parameters in the turning process of Haynes 25 alloy using uncoated carbide tools. Design of experiment (DOE) has been used for studying the effect of the main turning parameters such as cooling condition, cutting speed and feed rate on the arithmetic average surface roughness (Ra) of Haynes-25 alloy. Tests are designed according to Taguchi’s orthogonal array. Experiments have been performed under dry cutting and conventional wet cooling. Minimum surface roughness was obtained in turning using uncoated tools under wet cooling condition at the cutting speed of 45 m/min and feed rate of 0.12 mm/rev.


Sign in / Sign up

Export Citation Format

Share Document