Geometrical Similarity Error Function-Innovative Adaptive Algorithm methodology in path generation synthesis of the four-bar mechanism using metaheuristic algorithms

Author(s):  
A Sardashti ◽  
HM Daniali ◽  
SM Varedi-Koulaei

This paper presents a novel methodology for path generation synthesis of the four-bar mechanism. A new objective function for the path generation synthesis problem, namely, the Geometrical Similarity Error Function (GSEF), is introduced. Indeed, GSEF assesses the similarity between generated and desired paths, and its number of design variables is less than those in the other synthesis methods. Then, using an Innovative Adaptive Algorithm (IAA), some operators are utilized for matching two similar paths. GSEF-IAA methodology has some significant advantages over the reported synthesis methods. The method is fast, takes much less CPU time, and saves a large amount of computer memory. Four path generation problems are solved using GSEF-IAA, and the results are compared with those of previous methods using some well-known optimization algorithms to demonstrate the efficiency of GSEF-IAA methodology.

10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


2016 ◽  
Vol 24 (2) ◽  
pp. 12-25 ◽  
Author(s):  
Samo Drobne ◽  
Mitja Lakner

Abstract The use of different objective functions in hierarchical aggregation procedures is examined in this paper. Specifically, we analyse the use of the original Intramax objective function, the sum-of-flows objective function, the sum-of-proportions-to-intra-regional-flows objective function, Smart’s weighted interaction index, the first and second CURDS weighted interaction indices, and Tolbert and Killian’s interaction index. The results of the functional regionalisation have been evaluated by self-containment statistics, and they show that the use of the original Intramax procedure tends to delineate operationally the most persuasive and balanced regions that, regarding the intra-regional flows, homogeneously cover the analysed territory. The other objective functions give statistically better but operationally less suitable results. Functional regions modelled using the original Intramax procedure were compared to the regions at NUTS 2 and NUTS 3 levels, as well as to administrative units in Slovenia. We conclude that there are some promising directions for further research on functional regionalisation using hierarchical aggregation procedures.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


1999 ◽  
Vol 122 (1) ◽  
pp. 280-287 ◽  
Author(s):  
Hiromu Hashimoto ◽  
Yasuhisa Hattori

The aim of this paper is to develop a general methodology for the optimum design of magnetic head sliders in improving the spacing characteristics between a slider and disk surface under static and dynamic operating conditions of hard disk drives and to present an application of the methodology to the IBM 3380-type slider design. To generate the optimal design variables, the objective function is defined as the weighted sum of the minimum spacing, the maximum difference in the spacing due to variation of the radial location of the head, and the maximum amplitude ratio of the slider motion. Slider rail width, taper length, taper angle, suspension position, and preload are selected as the design variables. Before the optimization of the head, the effects of these five design variables on the objective function are examined by a parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique, combining the direct search method and successive quadratic programming. From the obtained results, the effectiveness of optimum design on the spacing characteristics of magnetic heads is clarified. [S0742-4787(00)03701-2]


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Bradley Howard ◽  
Aimee Cloutier ◽  
Jingzhou (James) Yang

An understanding of human seated posture is important across many fields of scientific research. Certain demographics, such as pregnant women, have special postural limitations that need to be considered. Physics-based posture prediction is a tool in which seated postures can be quickly and thoroughly analyzed, as long the predicted postures are realistic. This paper proposes and validates an optimization formulation to predict seated posture for pregnant women considering ground and seat pan contacts. For the optimization formulation, the design variables are joint angles (posture); the cost function is dependent on joint torques. Constraints include joint limits, joint torque limits, the distances from the end-effectors to target points, and self-collision avoidance constraints. Three different joint torque cost functions have been investigated to account for the special postural characteristics of pregnant women and consider the support reaction forces (SRFs) associated with seated posture. Postures are predicted for three different reaching tasks in common reaching directions using each of the objective function formulations. The predicted postures are validated against experimental postures obtained using motion capture. A linear regression analysis was used to evaluate the validity of the predicted postures and was the criteria for comparison between the different objective functions. A 56 degree of freedom model was used for the posture prediction. Use of the objective function minimizing the maximum normalized joint torque provided an R2 value of 0.828, proving superior to either of two alternative functions.


Author(s):  
She-min Zhang ◽  
Nobuyoshi Morita ◽  
Takao Torii

Abstract This paper proposes a new method to reduce the forced vibration response of frame of linkage. It is that the root-mean-square (RMS) value of binary maximum (Bmax) of forced vibration response at a series of angular velocities is taken as the objective function, and the counterweight mass parameters of links and the stiffness factors are used as design variables. Then, it is found out that the responses are related not only to the Bmax value of shaking forces, but also to the shape of curve of shaking forces. The calculation results are compared with those of two other methods used in the reduction of forced vibration response by optimized balance of linkages, and it is shown that the new method can significantly reduce the responses of frame of linkage.


Author(s):  
Irfan Ullah ◽  
Sridhar Kota

Abstract Use of mathematical optimization methods for synthesis of path-generating mechanisms has had only limited success due to the very complex nature of the commonly used Structural Error objective function. The complexity arises, in part, because the objective function represents not only the error in the shape of the coupler curve, but also the error in location, orientation and size of the curve. Furthermore, the common introduction of timing (or crank angle), done generally to facilitate selection of corresponding points on the curve for calculating structural error, has little practical value and unnecessarily limits possible solutions. This paper proposes a new objective function, based on Fourier Descriptors, which allows search for coupler curve of the desired shape without reference to location, orientation, or size. The proposed objective function compares overall shape properties of curves rather than making point-by-point comparison and therefore does not requires prescription of timing. Experimental evidence is provided to show that it is much easier to search the space of the proposed objective function compared to the structural error function.


Author(s):  
Yasuhisa Hattori ◽  
Hiromu Hashimoto ◽  
Masayuki Ochiai

Abstract The aim of this paper is to develop the general methodology for the optimum design of magnetic head slider for improving the spacing characteristics between head slider and disk surfaces under the static and dynamic operation conditions of hard disk drive and to present an application of the methodology to IBM 3380-type slider design. In the optimum design, the objective function is defined as the weighted sum of minimum spacing, maximum difference of spacing due to variation of radial location of head and maximum amplitude ratio of slider motion. Slider rail width, taper length, taper angle, suspension position and preload are selected as the design variables. Before the optimization of magnetic head slider, the effects of these five design variables on the objective function are examined by the parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique combining the direct search method and the successive quadratic programming (SQP). From the results obtained, the effectiveness of optimum design on the spacing characteristics of magnetic head slider is clarified.


Sign in / Sign up

Export Citation Format

Share Document