Experimental investigation and empirical modeling for corrosion rate prediction of biodegradable zinc based composite considering the effect of constituent materials

Author(s):  
Dayanidhi Krishana Pathak ◽  
Pulak Mohan Pandey

Biodegradable zinc (Zn) has shown great potential in the area of biomedical applications. Though, the mechanical properties are decisive for the use of Zn for orthopedic and cardiovascular applications. Consequently, one needs to focus on improving the mechanical properties of Zn for its suitability in biomedical applications. Alloying of essential elements of the human body resulted in enhancement of Zn’s mechanical properties in recent years. The corrosion rate of pure Zn is ideal; however, the addition of other elements has resulted in a loss of its ideal corrosion rate. The inclusion of hydroxyapatite (HA) and iron (Fe) in Zn has also been reported in improving the mechanical properties. Hence, a need is raised for the development of a model which can predict the corrosion rate after adding HA along with Fe in Zn. In this research work, empirical based modeling is proposed to predict the corrosion rate, which incorporates the outcome of addition of Fe and HA in Zn. The Zn based materials were fabricated with the help of microwave sintering for developing the empirical model. The corrosion properties of the materials were assessed through a potentiodynamic polarization test in a simulated body fluid solution. The enhanced corrosion rate was attained with the rise in HA (wt%) and Fe (wt%) in Zn. An empirical correlation was established between the influencing controlling parameters (i.e., corrosion current, equivalent weight, and material density) of corrosion rate. Confirmation experiments were conducted to validate the developed model, and the highest error of 6.12% was obtained between the experimental and predicted values exhibiting the efficaciousness of the proposed model.

2013 ◽  
Vol 765 ◽  
pp. 788-792 ◽  
Author(s):  
Yu Lu ◽  
Andrew Bradshaw ◽  
Yu Lung Chiu ◽  
Ian Jones

Biomedical applications of magnesium alloys have attracted increasing attention due to their unique combination of advantages. However, the poor corrosion resistance is an obstacle to magnesium alloys being used as biodegradable materials. As zinc (Zn) and calcium (Ca) are non-toxic and recognized as nutritionally essential elements in the human body, in this study Zn and Ca were selected as alloying elements to produce suitable bio-corrosion properties. The grain size was reduced significantly from 141.4 μm to 97.3 μm by adding Ca. The bio-corrosion performance of the two alloys (Mg-3Zn and Mg-3Zn-0.3Ca) was characterized using immersion tests in simulated body fluid at 37 °C. The alloys were dominated by pitting corrosion. Heat treatment was used to alter the microstructure and influence further the corrosion rate. The correlation between microstructure and bio-corrosion rate was evaluated, in the light of the alloying elements and the heat treatment employed.


2016 ◽  
Vol 844 ◽  
pp. 38-45 ◽  
Author(s):  
Tatiana Liptáková ◽  
Martin Lovíšek ◽  
Branislav Hadzima

The Al-brasses are considered corrosion resistant construction materials often used to pipe systems in energy industry, where they are exposed to flowing liquids environments. In that system the brasses are loaded chemically and mechanically. The aim of our research work is to compare corrosion properties of four Al-brasses produced by different manufactures because in operation conditions they have dissimilar reliability and durability. The examined Al-brasses have similar chemical composition but differ in microstructure, surface state what affects their corrosion and mechanical properties. The effect of the mentioned parameters on corrosion and mechanical susceptibility to degradation are investigated by chosen experimental methods.


2013 ◽  
Vol 745-746 ◽  
pp. 33-38 ◽  
Author(s):  
Shi Jie Zhu ◽  
Li Guo Wang ◽  
Jin Jin ◽  
Jing Wang ◽  
Yu Feng Sun ◽  
...  

In order to improve the mechanical properties and processing performance of the Mg alloys, and to prevent magnesium alloy from non-uniform corrosion and too fast degradation in the degradation process, the biological medical Mg-Zn-Y-Nd alloy was modified by the friction stir processing (FSP) technique in this paper. The microstructural evolution and phase constitute of the stir zone of Mg-Zn-Y-Nd alloy were investigated, the microhardness and the corrosion properties of the alloy after FSP process was studied. The results showed that the FSP parameters had significant influence on the stir zone and thermo-mechanically affected zone. The stir zone experienced severe plastic deformation and complete dynamic recrystallization after FSP. The stir zone consists of fine equiaxed recystallized grains, and thermo-mechanically affected zone (TMAZ) has deformed grain structure. The second phase distributed along grain boundaries in as-cast state was broken during the FSP and transformed into fine, uniform and dispersed particles in the grains. After FSP, the size of grains was reduced from 50μm (as-cast alloy) to 1-2μm. However, the second phase constitution didnt change. The alloy obtained good comprehensive mechanical properties after FSP. The microhardness of alloy after FSP increased from 39HV (as-cast alloy) to 64HV(FSPed alloy). The results of electrochemical tests in simulated body fluid showed that the corrosion potential of FSP alloy increased and corrosion current density decreased, which confirmed the uniform corrosion of FSPed alloy.


2017 ◽  
Vol 270 ◽  
pp. 205-211 ◽  
Author(s):  
Drahomír Dvorský ◽  
Jiří Kubásek ◽  
Dalibor Vojtěch

Magnesium and its alloys are considered for application as materials for biodegradable implants as they have mechanical properties similar to bone tissue. High demands on corrosion and mechanical properties are made on these alloys. While mechanical properties of magnesium are usually enhanced by alloying, corrosion properties may deteriorate. This paper is focused on the comparison of magnesium alloys AZ31 (3 wt. % Al, 1 wt. % Zn) and WE43 (4 wt. % Y, 3 wt. % Nd) which are considered for biomedical applications. Besides the type of alloying elements, the preparation process has also great impact on final mechanical and corrosion properties. Alloying elements may be dissolved in magnesium matrix or they can form intermetallic phases, which alter final properties. Microstructure, mechanical and corrosion properties of AZ31 and WE43 were studied and compared with pure magnesium.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7847
Author(s):  
Viacheslav Bazhenov ◽  
Anastasia Lyskovich ◽  
Anna Li ◽  
Vasily Bautin ◽  
Alexander Komissarov ◽  
...  

Mg alloys have mechanical properties similar to those of human bones, and have been studied extensively because of their potential use in biodegradable medical implants. In this study, the influence of different heat treatment regimens on the microstructure and mechanical and corrosion properties of biodegradable Mg–Zn–Ga alloys was investigated, because Ga is effective in the treatment of disorders associated with accelerated bone loss. Solid–solution heat treatment (SSHT) enhanced the mechanical properties of these alloys, and a low corrosion rate in Hanks’ solution was achieved because of the decrease in the cathodic-phase content after SSHT. Thus, the Mg–4 wt.% Zn–4 wt.% Ga–0.5 wt.% Y alloy after 18 h of SSHT at 350 °C (ultimate tensile strength: 207 MPa; yield strength: 97 MPa; elongation at fracture: 7.5%; corrosion rate: 0.27 mm/year) was recommended for low-loaded orthopedic implants.


2015 ◽  
Vol 778 ◽  
pp. 164-167 ◽  
Author(s):  
Zhi Qiang Ren ◽  
Xiao Ming Wang ◽  
Qi Wei Wang ◽  
Chao Ji Zhou ◽  
Yao Zhang

In this study, the anti-corrosion properties of nickel-based coatings on the surface of copper alloy were investigated, and damages caused by corrosion on the copper surface were resolved. Researchers prepared nickel-based coatings by supersonic particles deposition, and tested the anti-corrosion properties of brass substrate and nickel-based coating by electrochemical technology and neutral salt spray. The results show that, the corrosion current of coating decreased 35 times than that of matrix. The successive and pyknotic oxide film on the surface of coating prevented reaction of corrosion further. When it reached 500 hours, the corrosion rate closed to 0. Nickel-based coatings prepared by supersonic particles deposition contribute to the increase of corrosion resistance significantly, which verifies that it is feasible to prepare outstanding corrosion resisting nickel-based coating by supersonic particles deposition.


Author(s):  
Lorena Gil-Flores ◽  
María D Salvador ◽  
Felipe L Penaranda-Foix ◽  
Roberto Rosa ◽  
Paolo Veronesi ◽  
...  

Zirconia is one of the most used ceramics, especially for biomedical applications, due to its exceptional mechanical properties. However, it is commonly known that its properties can be diminished owing to a low temperature degradation (LTD). This phenomenon consists on a spontaneous phase transformation, from tetragonal to monoclinic, under certain conditions, which is accelerated when the samples are exposed under high levels of humidity at a temperature range between 20-300 ºC. In addition to the fact that the monoclinic phase presents worse mechanical properties than the tetragonal one, there is a volume change of 4% between phases that gives rise to defects in the material as microcracks. Due to this reason, zirconia prostheses failed catastrophically inside the human body between 1999 and 20011. Previous researches reveal that Al2O3 addition suppress the propagation of phase transformation2. Thus, the aim of the present work is to study the hydrothermal ageing of zirconia doped with ceria and toughened with alumina (10Ce-TZP/Al2O3) composite, which has been sintered by microwave employing two different frequencies: 2.45 and 5.8 GHz. Microwave heating technology is based on the absorption of electromagnetic radiation by the material, which allows the sample to be heated. So far, most microwave heating equipments use 2.45 GHz; accordingly, the novelty of this study is to employ a frequency of 5.8 GHz and to investigate its effect on LTD. LTD is carried out in an autoclaved in steam at 120 ºC and 1.2 bar, because these conditions accelerate the hydrothermal aging process3. In order to characterize the degraded samples, micro-Raman spectroscopy, AFM, nanoindentation technique and electronic microscopy have been performed.   References 1.           Norton, M. R., Yarlagadda, R., Anderson, G. H. J. Bone Joint Surg. Br., 2002, 84–B, 631–635. 2.           Fabbri, P., Piconi, C., Burresi, E., Magnani, G., Mazzanti, F., Mingazzini, C. Dent. Mater., 2014. 3.           Presenda, Á., Salvador, M. D., Moreno, R., Borrell, A. J. Am. Ceram. Soc., 2015, 98, 3680–3689.   


2019 ◽  
Vol 33 (10) ◽  
pp. 1348-1372 ◽  
Author(s):  
Yang Chen ◽  
Jinhe Dou ◽  
Huijun Yu ◽  
Chuanzhong Chen

Magnesium-based alloys exhibit biodegradable, biocompatible and excellent mechanical properties which enable them to serve as ideal candidate biomedical materials. In particular, their biodegradable ability helps patients to avoid a second surgery. The corrosion rate, however, is too rapid to sustain the healing process. Alloying is an effective method to slow down the corrosion rate. However, currently magnesium alloys used as biomaterials are mostly commercial alloys without considering cytotoxicity from the perspective of biosafety. This article comprehensively reviews the status of various existing and newly developed degradable magnesium-based alloys specially designed for biomedical application. The effects of critical alloying elements, compositions, heat treatment and processing technology on the microstructure, mechanical properties and corrosion resistance of magnesium alloys are discussed in detail. This article covers Mg–Ca based, Mg–Zn based, Mg–Sr based, Mg–RE based and Mg–Cu-based alloy systems. The novel methods of fabricating Mg-based biomaterials and surface treatment on Mg based alloys for potential biomedical applications are summarized.


2015 ◽  
Vol 819 ◽  
pp. 331-336
Author(s):  
H.Y. Tok ◽  
Esah Hamzah ◽  
Hamid Reza Bakhsheshi-Rad

Magnesium and its alloys have great potential as biodegradable metallic implant materials with good mechanical properties. However, the poor corrosion rate and the production of hydrogen during degradation hindered its application. Binary alloy, Mg-3Ca and ternary alloy, Mg-3Ca-3Zn alloy were studied to investigate their bio-corrosion properties. Microstructure evolution and surfaces of corroded alloys were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The bio-corrosion behavior of the Mg alloys was investigated using immersion and electrochemical tests in Kokubo solution. Microstructural analysis showed that binary Mg-3Ca alloy consisted of α-Mg and Mg2Ca phases and ternary Mg-3Ca-3Zn alloy consisted of α-Mg, Ca2Mg6Zn3 and Mg2Ca phases. These phases had significant effect on the corrosion resistant of the alloy. Electrochemical test showed an improvement in ternary alloys where the corrosion current density reduced from 0.497 mA/cm2 in Mg-3Ca to 0.312 mA/cm2 in Mg-3Ca-3Zn alloy. Ternary Mg-3Ca-3Zn showed significant lower corrosion rate (1.1 mg/cm2/day) compared to binary Mg-3Ca (5.8 mg/cm2/day) alloy after 14 days immersion test.


CORROSION ◽  
10.5006/3972 ◽  
2022 ◽  
Author(s):  
Hamaid Khan ◽  
Gökhan Özer ◽  
Mustafa Safa Yilmaz ◽  
Gürkan Tarakçı

Existing studies suggest that martensite-to-austenite reversion can increase the overall mechanical strength of maraging steel. Their effect on corrosion properties, however, is unclear. Selective laser melted (SLM) specimens were tempered near austenite finish temperatures to investigate the electrochemical effect of reversed austenite. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize their microstructure. To define and test pitting performance, potentiodynamic polarization and open-circuit potential were performed in a 3.5 wt. % NaCl solution. The reversed austenite precipitated mainly along the martensite lath boundaries during the Intercritical heat treatment at 720°C. The nucleation of reversed austenite is allowed by the local Ni enrichment caused by the dissolution of intermetallic particles. As a result, the tempered 720°C specimens reported a higher pitting potential, lowest corrosion current density, and lowest corrosion rate than the as-printed, aged, and homogenized specimens. No investigations have been performed to date that demonstrate the impact of austenite reversion on the corrosion susceptibility of SLM maraging steel. Other than being nobler, austenite is lighter than martensite due to reduced precipitant density, accounting for fewer galvanic cells and a lower corrosion rate.


Sign in / Sign up

Export Citation Format

Share Document