Multi-shaped tool wear study during rotary ultrasonic drilling and conventional drilling for amorphous solid

Author(s):  
A Sharma ◽  
V Jain ◽  
D Gupta

Float glass, which is a hard and brittle material, is generally machined and drilled using rotary ultrasonic machining and conventional drilling to create products such as solar panels, metrological instruments, etc. But researchers are facing serious issues with regard to tool wear and opting for best shape of tool for the drilling purpose. In this study, blind holes are made on float glass specimen using rotary ultrasonic drilling and CNC conventional drilling process with the aid of multi-shaped tools. The opted tools are namely hollow abrasive tool, pin-pointed conical tool, flat cylindrical tools, and concave circular tool. The entire experimental work is accomplished by considering industrial conditions. Multi-shaped tool’s weight is computed at three stages i.e. (a) fresh tool, (b) after rotary ultrasonic drilling, and (c) after conventional drilling to analyze the overall tool wear. Apparently, micro-studies are used to investigate the phenomena of lateral and end face tool wear while creating blind holes at these three stages. It is revealed that the concave circular tool achieved a minimum percentage of weight loss i.e. 4.92% after conventional drilling and 1.96% after rotary ultrasonic drilling process, which could be preferred for drilling purpose followed by the hollow abrasive tool.

2016 ◽  
Vol 10 (5) ◽  
pp. 780-785 ◽  
Author(s):  
Akira Mizobuchi ◽  
◽  
Yuki Kagawa ◽  
Tohru Ishida

It is well known that chemically strengthened glass plate has excellent strength and hardness properties. These characteristic properties are advantageous for the touch screens used in mobile devices. However, they are detrimental to the process of machining the glass plate. For example, chipping and crack occur around the inlet and outlet of the drilled hole, and the rate of tool wear is significant. Therefore, the surface quality and machining efficiency are low. The drilling process is extremely difficult. In this study, we describe the use of a miniature drilling method to achieve high-quality drilled holes in chemically strengthened glass plate using an electroplated diamond tool with a diameter of 1 mm or less. Using the developed tool with a diameter of 0.5 mm, it is demonstrated that the conventional drilling method can be used to drill a through-hole in the glass plate.


Author(s):  
Shuo Chen ◽  
Ping Zou ◽  
Hao Wu ◽  
Di Kang ◽  
Wenjie Wang

When difficult-to-machine materials are drilled, chips are produced, and these chips are difficult to control during the drilling process. Due to the limitations of conventional drilling, materials are drilled by ultrasonic-vibration-assisted technology. In this paper, the kinematics of ultrasonic-vibration-assisted drilling are first analyzed and the relevant equations are established. The characteristic thicknesses of chips are then studied, and the drilling paths for different phases and thicknesses of the chips are analyzed. The condition of complete geometric chipbreaking in the ultrasonic-vibration-assisted drilling process is examined, and a regional map of chipbreaking is presented, which in theory allows chips to be controlled. Chips produced in ultrasonic-vibration-assisted drilling with different parameters are compared in a series of experiments. The chipbreaking condition is studied in more detail, and the chips produced by drilling difficult-to-machine materials are effectively controlled. Furthermore, the results of this study show that a reasonable selection of parametric variables in ultrasonic-vibration-assisted drilling results in thin and smooth chips, less tool wear, and superior surface roughness.


Author(s):  
Arpit Srivastava

Abstract: The proper selection of machining conditions and machining parameter is an important aspect, before going to machine a brittle material by rotary ultrasonic drilling process Because these conditions will determine such important characteristics as; Material removal rate (MRR) and Surface roughness (SR). The purpose of this work is to determine the optimal values of machining parameters of rotary ultrasonic drilling process. The work has been based on the effect of three design factors: Tool feed rate, vibration frequency and grain size of abrasive particle on such characteristic like material removal rate (MRR). This work has been done by means of the technique of design of experiment (DOE), which provides us to perform the above-mentioned analysis with small number of experiments. In this work, a L9 orthogonal array is used to design the experiment. The adequate selection of machining parameters is very important in manufacturing system, because these parameters determine the surface quality and dimensional accuracy of the manufactured part. The optimal setting of the parameters are determined through experiments planned, conducted and analyzed using the Taguchi method. Keywords: RUSM, Material removal rate, Drilling, Taguchi method


Author(s):  
Song Dong ◽  
Wenhe Liao ◽  
Kan Zheng ◽  
Wenrui Ma

The stacks of carbon fiber-reinforced polymer (CFRP) and aluminum are widely used in aviation industry due to its excellent mechanical and physical properties. Recently, rotary ultrasonic drilling technology which is recognized as a useful machining method has been introduced to machining these stacks. Thrust force influences the machinability directly such as tool wear, cutting temperature, and hole qualities. In this study, a theoretical model of thrust force for rotary ultrasonic drilling of CFRP/aluminum stacks is proposed. Based on the analysis of kinematic characteristics, the axial uncut chip thickness of rotary ultrasonic drilling is presented. Then the whole machining process of stacks is divided into five different states. Forces on cutting edge and chisel edge in different materials are modeled, respectively. After that, the thrust forces of five-state rotary ultrasonic drilling process are achieved by integrating with integral limits analysis in each state. Finally, verification experiments are conducted, and experimental results show that the trends of thrust forces agree well with the thrust force model. Therefore, this theoretical model can be used to evaluate the thrust force in rotary ultrasonic drilling of CFRP/aluminum stacks.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Dongxi Lv ◽  
Dong Liu ◽  
Gang Chen ◽  
Leilei Song ◽  
Chun Yan ◽  
...  

Abstract This paper presented a fundamental investigation on the exit-chipping formation mechanisms involved in rotary ultrasonic drilling (RUD) and conventional drilling (CD) of glass BK7. It was found that the mutual tool-material extrusion initially activated the subsurface crack with the maximum depth (incipient crack) at the margin of the machined surface, and its penetration of the undrilled thickness brought about the emergence of the exit-chipping at Region I. Subsequently, the opposite propagations of two ring-cracks along the circumferential direction of the drilled hole were conducive to the collapse of the machined cylinder, thus leading to the appearance of the exit-chipping at Region II. Ultrasonic superposition significantly decreased the actual undrilled thickness of the machined surface, while slightly increased the exit-chipping width. All the exit-chippings, generated with and without ultrasonic, exhibited the elliptic and symmetrical morphologies accompanied by the corrugated stripes winding the entire chipping surfaces. The quantitative relationship between the instantaneous extrusion pressure and the propagation direction of the incipient crack was proposed, revealing that the propagation angle was inversely proportional to the extrusion pressure. Ultrasonic superimposition augmented the extrusion pressure exerted the machined surface, which reduced the propagation angle of the incipient crack. The elliptic morphology characteristics of the exit-chipping were attributed to the parabolic variation of the additional bending moment with the circumferential spreading of the ring-crack. Ultrasonic superposition increased the propagation angle of the ring-crack, thus deteriorating the exit quality of the drilled hole.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1059 ◽  
Author(s):  
Hisham Alkhalefah

Alumina is an advanced ceramic with applications in dental and medical sciences. Since ceramics are hard and brittle, their conventional machining is expensive, arduous, and time-consuming. As rotary ultrasonic machining is among the most adequate and proficient processing techniques for brittle materials like ceramics. Therefore, in this study, rotary ultrasonic drilling (RUD) has been utilized to drill holes on alumina ceramic (Al2O3). This study investigates the effect of key RUD process variables, namely vibration frequency, vibration amplitude, spindle speed, and feed rate on the dimensional accuracy of the drilled holes. A four-variable three-level central composite design (thirty experiments on three sample plates) is utilized to examine the comparative significance of different RUD process variables. The multi-objective genetic algorithm is employed to determine the optimal parametric conditions. The findings revealed that material removal rates depend on feed rate, while the cylindricity of the holes is mostly controlled by the speed and feed rate of the spindles. The optimal parametric combination attained for drilling quality holes is speed = 4000 rpm, feed rate = 1.5 (mm/min), amplitude = 20 (µm), and frequency = 23 (kHz). The validation tests were also conducted to confirm the quality of drilled holes at the optimized process parameters.


Sign in / Sign up

Export Citation Format

Share Document