A novel approach for EMHD Williamson nanofluid over nonlinear sheet with double stratification and Ohmic dissipation

Author(s):  
Muhammad Bilal ◽  
Muhammad Ramzan ◽  
Yasir Mehmood ◽  
Tanveer Sajid ◽  
Sajid Shah ◽  
...  

The current article highlights the non-Newtonian Williamson nanofluid with electro-magnetohydrodynamic (EMHD) flow over a nonlinear expanding sheet. Thermal and solutal stratification effects are considered due to the higher temperature difference and the impact of variable viscosity along with Ohmic dissipation is also incorporated. Transformation is applied for the conversion of physical partial differential equations (PDEs) into non-dimensional higher order nonlinear ordinary differential equations (ODEs). A well-known analytical approach known as the homotopy analysis method (HAM) is effectively applied to solve the differential equations. Different non-dimensional emerging parameters such as Weissenberg and Hartman number, Brownian motion and stratification parameters, stretching index, viscosity parameter, and Lewis number are used to check their impacts on velocity, concentration, and temperature profiles. To acquire the optimal solution through HAM, [Formula: see text] -curves are drawn. In the tabulated form, the numerical values for the non-dimensional Nusselt number and skin friction are arranged.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Poom Kumam ◽  
Taza Gul ◽  
Wajdi Alghamdi ◽  
Wiyada Kumam ◽  
...  

AbstractThe current study provides a detailed analysis of steady two-dimensional incompressible and electrically conducting magnetohydrodynamic flow of a couple stress hybrid nanofluid under the influence of Darcy–Forchheimer, viscous dissipation, joule heating, heat generation, chemical reaction, and variable viscosity. The system of partial differential equations of the current model (equation of motion, energy, and concentration) is converted into a system of ordinary differential equations by adopting the suitable similarity practice. Analytically, homotopy analysis method (HAM) is employed to solve the obtained set of equations. The impact of permeability, couple-stress and magnetic parameters on axial velocity, mean critical reflux condition and mean velocity on the channel walls are discussed in details. Computational effects show that the axial mean velocity at the boundary has an inverse relation with couple stress parameter while the permeability parameter has a direct relation with the magnetic parameter and vice versa. The enhancement in the temperature distribution evaluates the pH values and electric conductivity. Therefore, the $$SWCNTs\,\,{\text{and}}\,\,MWCNTs$$ S W C N T s and M W C N T s hybrid nanofluids are used in this study for medication purpose.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110162
Author(s):  
Aisha Anjum ◽  
Sadaf Masood ◽  
Muhammad Farooq ◽  
Naila Rafiq ◽  
Muhammad Yousaf Malik

This article addresses MHD nanofluid flow induced by stretched surface. Heat transport features are elaborated by implementing double diffusive stratification. Chemically reactive species is implemented in order to explore the properties of nanofluid through Brownian motion and thermophoresis. Activation energy concept is utilized for nano liquid. Further zero mass flux is assumed at the sheet’s surface for better and high accuracy of the out-turn. Trasnformations are used to reconstruct the partial differential equations into ordinary differential equations. Homotopy analysis method is utilized to obtain the solution. Physical features like flow, heat and mass are elaborated through graphs. Thermal stratified parameter reduces the temperature as well as concentration profile. Also decay in concentration field is noticed for larger reaction rate parameter. Both temperature and concentration grows for Thermophoresis parameter. To check the heat transfer rate, graphical exposition of Nusselt number are also discussed and interpret. It is noticed that amount of heat transfer decreases with the increment in Hartmann number. Numerical results shows that drag force increased for enlarged Hartmann number.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 849 ◽  
Author(s):  
Muhammad Ramzan ◽  
Asma Liaquet ◽  
Seifedine Kadry ◽  
Sungil Yu ◽  
Yunyoung Nam ◽  
...  

The present research examines the impact of second-order slip with thermal and solutal stratification coatings on three-dimensional (3D) Williamson nanofluid flow past a bidirectional stretched surface and envisages it analytically. The novelty of the analysis is strengthened by Cattaneo–Christov (CC) heat flux accompanying varying thermal conductivity. The appropriate set of transformations is implemented to get a differential equation system with high nonlinearity. The structure is addressed via the homotopy analysis technique. The authenticity of the presented model is verified by creating a comparison with the limited published results and finding harmony between the two. The impacts of miscellaneous arising parameters are deliberated through graphical structures. Some useful tabulated values of arising parameters versus physical quantities are also discussed here. It is observed that velocity components exhibit an opposite trend with respect to the stretching ratio parameter. Moreover, the Brownian motion parameter shows the opposite behavior versus temperature and concentration distributions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdullah Dawar ◽  
Zahir Shah ◽  
Hashim M. Alshehri ◽  
Saeed Islam ◽  
Poom Kumam

AbstractThis study presents the magnetized and non-magnetized Casson fluid flow with gyrotactic microorganisms over a stratified stretching cylinder. The mathematical modeling is presented in the form of partial differential equations and then transformed into ordinary differential equations (ODEs) utilizing suitable similarity transformations. The analytical solution of the transformed ODEs is presented with the help of homotopy analysis method (HAM). The convergence analysis of HAM is also presented by mean of figure. The present analysis consists of five phases. In the first four phases, we have compared our work with previously published investigations while phase five is consists of our new results. The influences of dimensionless factors like a magnetic parameter, thermal radiation, curvature parameter, Prandtl number, Brownian motion parameter, Schmidt number, heat generation, chemical reaction parameter, thermophoresis parameter, Eckert number, and concentration difference parameter on physical quantities of interests and flow profiles are shown through tables and figures. It has been established that with the increasing Casson parameter (i.e. $$\beta \to \infty$$ β → ∞ ), the streamlines become denser which results the increasing behavior in the fluid velocity while on the other hand, the fluid velocity reduces for the existence of Casson parameter (i.e. $$\beta = 1.0$$ β = 1.0 ). Also, the streamlines of stagnation point Casson fluid flow are highly wider for the case of magnetized fluid as equated to non-magnetized fluid. The higher values of bioconvection Lewis number, Peclet number, and microorganisms’ concentration difference parameter reduces the motile density function of microorganisms while an opposite behavior is depicted against density number.


Author(s):  
Vijay Patel ◽  
Jigisha Pandya

In this research paper, the Homotopy Analysis Method is used to investigate the twodimensional electrical conduction of a magneto-hydrodynamic (MHD) Jeffrey Fluid across a stretching sheet under various conditions, such as when electrical current and temperature are both present, and when heat is added in the presence of a chemical reaction or thermal radiation. Applying similarity transformation, the governing partial differential equation is transformed into terms of nonlinear coupled ordinary differential equations. The Homotopy Analysis Method is used to solve a system of ordinary differential equations. The impact of different numerical values on velocity, concentration, and temperature is examined and presented in tables and graphs. The fluid velocity reduces as the retardation time parameter(2) grows, while the fluid velocity inside the boundary layer increases as the Deborah number () increases. The velocity profiles decrease when the magnetic parameter M is increased. The results of this study are entirely compatible with those of a viscous fluid. The Homotopy Analysis Method calculations have been carried out on the PARAM Shavak high-performance computing (HPC) machine using the BVPh2.0 Mathematica tool.


2020 ◽  
Vol 17 (12) ◽  
pp. 5483-5494
Author(s):  
Ch. Praveen Kumar ◽  
E. Sreenivasa Rao ◽  
P. Chandra Sekhar

This paper presents a novel approach to reduce the impact of crosstalk in multi-layered GNR (MLGNR), single walled CNT (SWCNT), multiwalled CNT (MWCNT) and mixed CNT bundle (MCB) based three-line bus architecture system. The proposed system primarily comprises of active shielding, repeater insertion and asymmetric triggering of the input signal. At the far end of the bus architecture, the crosstalk induced noise and propagation delay of MLGNR, SWCNT, MWCNT and MCB interconnects have been analyzed with and without the impact of shielding. A standard ternary inverter (STI) driver model is used to obtain the ternary logic at the output. Using the specified output, a temperature dependent comparative analysis is also performed for MLGNR and bundled CNT interconnects with and without shielding. Using industry standard HSPICE circuit simulations, it can be observed that the MLGNR offers a lower paracitic values even in higher temperature in comparison to the SWCNT, MWCNT and MCB interconnects. It primarily leads to a lesser delay and crosstalk using a bus interconnect system. The analysis has also extended for delay and crosstalk analysis for different interconnect lengths and temperatures with an insertion of shielding, repeaters and asymmetric triggering of bus architecture system. Under these conditions, it is also proved that an MLGNR based bus architecture offers a lesser crosstalk induced delay and noise compared to CNT bundle interconnects.


2021 ◽  
Vol 15 (1) ◽  
pp. 65-98
Author(s):  
Mhamed Zineddine

The rise of digitization in industrial control systems using commercial off-the-shelf software has encouraged the use of existing IT security solutions. The aim of this study is to prevent intrusion detection and prevention systems' actions from affecting the normal functions of sensitive ICSs. A novel approach called IMMAESA based on a heuristic algorithm is proposed to evaluate the impact of IDPSs' actions when mitigating cyber-attacks. The crux of this novel approach is the IDPS does not react until it assesses the impact of its actions. The bat-algorithm is used to find an optimal solution that preserves the reliability of the system. IMMAESA method is simulated on a known nuclear power plant design, the APR1400. Results show that the proposed method lets the IDPS effectively makes tradeoffs before execution, thus, avoid any undesirable effects. The IDPS selects a set of actions (severity ~ 0,750 and reliability ~ 0,767) with minor consequences. Thus, the proposed method would be a major contribution to the ICT security field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hassan Waqas ◽  
Umar Farooq ◽  
Aqsa Ibrahim ◽  
M. Kamran Alam ◽  
Zahir Shah ◽  
...  

AbstractNanofluids has broad applications such as emulsions, nuclear fuel slurries, molten plastics, extrusion of polymeric fluids, food stuffs, personal care products, shampoos, pharmaceutical industries, soaps, condensed milk, molten plastics. A nanofluid is a combination of a normal liquid component and tiny-solid particles, in which the nanomaterials are immersed in the liquid. The dispersion of solid particles into yet another host fluid will extremely increase the heat capacity of the nanoliquid, and an increase of heat efficiency can play a significant role in boosting the rate of heat transfer of the host liquid. The current article discloses the impact of Arrhenius activation energy in the bioconvective flow of Burger nanofluid by an inclined wall. The heat transfer mechanism of Burger nanofluid is analyzed through the nonlinear thermal radiation effect. The Brownian dispersion and thermophoresis diffusions effects are also scrutinized. A system of partial differential equations are converted into ordinary differential equation ODEs by using similarity transformation. The multi order ordinary differential equations are reduced to first order differential equations by applying well known shooting algorithm then numerical results of ordinary equations are computed with the help of bvp4c built-in function Matlab. Trends with significant parameters via the flow of fluid, thermal, and solutal fields of species and the area of microorganisms are controlled. The numerical results for the current analysis are seen in the tables. The temperature distribution increases by rising the temperature ratio parameter while diminishes for a higher magnitude of Prandtl number. Furthermore temperature-dependent heat source parameter increases the temperature of fluid. Concentration of nanoparticles is an decreasing function of Lewis number. The microorganisms profile decay by an augmentation in the approximation of both parameter Peclet number and bioconvection Lewis number.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2297
Author(s):  
Fuzhang Wang ◽  
Muhammad Imran Asjad ◽  
Saif Ur Rehman ◽  
Bagh Ali ◽  
Sajjad Hussain ◽  
...  

Bioconvection phenomena for MHD Williamson nanofluid flow over an extending sheet of irregular thickness are investigated theoretically, and non-uniform viscosity and thermal conductivity depending on temperature are taken into account. The magnetic field of uniform strength creates a magnetohydrodynamics effect. The basic formulation of the model developed in partial differential equations which are later transmuted into ordinary differential equations by employing similarity variables. To elucidate the influences of controlling parameters on dependent quantities of physical significance, a computational procedure based on the Runge–Kutta method along shooting technique is coded in MATLAB platform. This is a widely used procedure for the solution of such problems because it is efficient with fifth-order accuracy and cost-effectiveness. The enumeration of the results reveals that Williamson fluid parameter λ, variable viscosity parameter Λμ and wall thickness parameter ς impart reciprocally decreasing effect on fluid velocity whereas these parameters directly enhance the fluid temperature. The fluid temperature is also improved with Brownian motion parameter Nb and thermophoresis parameter Nt. The boosted value of Brownian motion Nb and Lewis number Le reduce the concentration of nanoparticles. The higher inputs of Peclet number Pe and bioconvection Lewis number Lb decline the bioconvection distribution. The velocity of non-Newtonian (Williamson nanofluid) is less than the viscous nanofluid but temperature behaves oppositely.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 535-544
Author(s):  
Anum Shafiq ◽  
Ghulam Rasool ◽  
Lehlohonolo Phali ◽  
Chaudry Masood Khalique

AbstractThis study reveals the characteristics of chemical reaction on Marangoni mixed convective stream towards a penetrable Riga surface. The heat and mass phenomena are analysed within the sight of Dufour and Soret impacts. The administering partial differential equations system is converted into three nonlinear ordinary differential equations utilizing appropriately adjusted transformations. The resultant system of highly nonlinear equations is analytically solved by invoking the homotopy analysis method. Thereafter, the convergence of series solutions is discussed. The impact of appropriate parameters on various flow fields is thoroughly explained with the help of graphs and tables. The wall drag coefficient and relevant flux rates are arranged and discussed for dimensionless parameters. The outcomes show that the stronger Dufour effect of liquid causes a notable incremental variation in heat and mass flux, whereas an opposite trend is noted in the heat flux rate for the Soret effect. However, the mass flux is still found increasing for the stronger Soret effect.


Sign in / Sign up

Export Citation Format

Share Document