Investigation of transient flow characteristics inside a centrifugal compressor for design and off-design conditions

Author(s):  
Jiayi Zhao ◽  
Zhiheng Wang ◽  
Yang Zhao ◽  
Guang Xi

As the flow rate decreases from the design to the rotating stall condition, the enhanced impeller–diffuser interaction considerably deteriorates the flow condition at the diffuser inlet, which may trigger stall and blade vibration problems. In order to reveal the underlying mechanism and estimate the impact of the interaction within the impeller and diffuser passages, measurements using the wireless acquisition technique and high-frequency response system have been conducted on a 1.5 stage centrifugal compressor with the vaned diffuser. The details of its transient flow characteristics suggest that the effects of the impeller sweep extensively propagate in the diffuser passage. Distinctions of the shroud reversed vortex effect exist between the main and splitter blades at the impeller outlet, which initiates the predominant passage passing frequency at the diffuser inlet under small flow rate condition. In addition, the present study explains why the dominant disturbance shifts back and force between the passage passing frequency and blade passing frequency for different positions of the diffuser and flow rates. Through flow throttling, the diffuser reaction toward the impeller passage considerably strengthens due to the growing pressure potential near the convex surface of the diffuser vane, which is associated with the reversed flow.

2000 ◽  
Vol 123 (2) ◽  
pp. 418-428 ◽  
Author(s):  
Mark P. Wernet ◽  
Michelle M. Bright ◽  
Gary J. Skoch

Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in high-speed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.


Author(s):  
D. Jin ◽  
U. Haupt ◽  
H. Hasemann ◽  
M. Rautenberg

Centrifugal compressor surge at high rotational speed and reduced blade thickness can produce dangerous excitation effects which have numerous resulted in problems in the past. This paper presents an investigation of blade excitation during surge in a high performance single stage centrifugal compressor with various impeller and diffuser geometry. The blade vibration was measured using blade mounted strain gages. The flow characteristics during surge as the cause of blade excitation were simultaneously determined by fast response dynamic pressure transducers. The experiments have been performed using a radial and a backswept impeller, as well as a vanless and vaned diffusers. The rotational speed of the compressor was varied from 5,000 to 14,500 rpm. The characteristics of unsteady flow during surge, such as, the flow pattern of rotating stall and the non-periodic pressure fluctuation during surge were studied in detail. The experimental results demonstrated that, in addition to the excitation of rotating stall during surge, strong non-periodic pressure fluctuations at the beginning and the end of the surge induced dangerous blade excitations in all compressor configurations. The maximum strain values of blade vibration for all compressor versions at different rotational speeds of the compressor were measured to estimate the danger of blade excitation during surge. The results showed that the blade excitation during compressor surge with vaned diffusers is stronger than the excitation with a vanless diffuser and that the blade excitation with a radial impeller is stronger than the excitation with a backswept impeller.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1493
Author(s):  
Weidong Cao ◽  
Wei Li

The operating range of axial flow pumps is often constrained by the onset of rotating stall. An improved method using a double inlet nozzle to stabilize the performance curve is presented in the current study; a single inlet nozzle and three kinds of double inlet nozzle with different rib gap widths at the inlet of axial flow pump impeller were designed. Three dimensional (3D) incompressible flow fields were simulated, and the distributions of turbulence kinetic energy and velocity at different flow rates located at the inlet section, as well as the pressure and streamline in the impeller, were obtained at the same time. The single inlet nozzle scheme and a double inlet nozzle scheme were studied; the experimental and numerical performance results show that although the cross section is partly blocked in the double inlet nozzle, the head and efficiency do not decline at stable operation flow rate. On small flow rate condition, the double inlet nozzle scheme effectively stabilized the head-flow performance, whereby the block induced by the backflow before the impeller was markedly improved by using a double inlet nozzle. It has also been found that the rib gap width impacts the efficiency curve of the axial flow pump.


Author(s):  
Xiaojian Li ◽  
Yijia Zhao ◽  
Zhengxian Liu ◽  
Ming Zhao

To understand the flow dynamic characteristics of a centrifugal compressor, the dynamic mode decomposition (DMD) method is introduced to decompose the complex three-dimensional flow field. Three operating conditions, peak efficiency (OP1), peak pressure ratio (OP2), and small mass flow rate (near stall, OP3) conditions, are analyzed. First, the physical interpretations of main dynamic modes at OP1 are identified. As a result, the dynamic structures captured by DMD method are closely associated with the flow characteristics. In detail, the BPF/2BPF (blade passing frequency) corresponds to the impeller–diffuser interaction, the rotor frequency (RF) represents the tip leakage flow (TLF) from leading edge, and the 4RF is related to the interaction among the downstream TLF, the secondary flow, and the wake vortex. Then, the evolution of the dynamic structures is discussed when the compressor mass flow rate consistently declines. In the impeller, the tip leakage vortex near leading edge gradually breaks down due to the high backpressure, resulting in multi-frequency vortices. The broken vortices further propagate downstream along streamwise direction and then interact with the flow structures of 4RF. As a result, the 8RF mode can be observed in the whole impeller, this mode is transformed from upstream RF and 4RF modes, respectively. On the other hand, the broken vortices show broadband peak spectrum, which is correlated to the stall inception. Therefore, the sudden boost of energy ratio of 14RF mode could be regarded as a type of earlier signal for compressor instability. In the diffuser, the flow structures are affected by the perturbation from the impeller. However, the flow in diffuser is more stable than that in impeller at OP1–OP3, since the leading modes are stable patterns of BPF/2BPF.


Author(s):  
Chris Clarke ◽  
Russell Marechale ◽  
Abraham Engeda ◽  
Michael Cave

A steady state simulation procedure is proposed to capture localized flow reversal inside of a centrifugal compressor vaneless diffuser. The procedure was performed on 12 compressor stages of varying geometry for speed lines of 13,100, 19,240, and 21,870 r/min. The simulations were run for all points from choke to surge including the experimentally determined rotating stall onset point. The experimental data and geometry were provided by Solar Turbines Inc. San Diego, CA. It was found possible to capture localized flow reversal inside of a vaneless diffuser using a steady state simulation. The results showed that using a geometric parameter, comparing the diffuser width, b4, to the impeller blade pitch distance, dpitch, it could be determined whether or not a steady state simulation could capture localized flow reversal. For values of b4/dpitch beneath 0.152 flow reversal could not be captured. But, for values of b4/dpitch above 0.177 localized flow reversal was captured. For values between 0.152 and 0.177, no conclusions could be drawn. Where possible, experimental data were compared against the diffuser inlet and outlet numerical profiles and the meridional contour plot. These comparisons served to validate the approach used in this article. These validations showed that the procedure defined herein is accurate and trustworthy within a specific range of geometric and flow characteristics. There are two other conclusions. First, the b4/dpitch parameter helps to define the type of flow breakdown. For b4/dpitch below 0.152, the flow breaks down in the circumferential direction, but for values of b4/dpitch above 0.177, the flow breaks down in the span-wise direction. Second, the simulations were able to capture instances of localized flow reversal before rotating stall onset. This concludes that localized flow reversal is not the determining factor in rotating stall onset as has been suggested by other investigators.


Author(s):  
Beat Ribi ◽  
Georg Gyarmathy

The present paper concerns the transition from mild to deep surge in a single stage centrifugal compressor using a vaned diffuser. Time-resolved measurements of the mass flow rate and the static pressures at various locations of the compressor were analyzed for different diffuser geometries and different operating points in the compressor map. When the throttle valve was gradually closed at an impeller tip Mach number (Mu) above 0.4, the compressor showed first mild and then deep surge whereas at Mu=0.4 rotating stall was the dominant instability. This single-cell rotating stall was identified to be caused by the impeller. During mild surge at higher Mach numbers the instantaneous flow and pressure traces showed that the overall flow at the stage inlet intermittently dropped below the critical value associated with the occurence of impeller rotating stall. Rotating stall appeared for a while but vanished as soon as the flow increased again. With further throttling, however, a threshold was reached at which rotating stall triggered deep surge. The results show that triggering only occurred if the flow deficiency causing rotating stall persisted long enough to permit the stall cell to make at least one or two revolutions.


1992 ◽  
Vol 114 (2) ◽  
pp. 312-320 ◽  
Author(s):  
S. Mizuki ◽  
Y. Oosawa

Unsteady flow patterns throughout a centrifugal compressor system during the rotating stall and the surge were measured experimentally. Various kinds of unsteady behavior of the flow appeared both continuously and suddenly as the flow rate decreased. The part-span stall, the full-span stall, the mild and deep stalls, and the deep surge appeared clearly. The fluctuations caused by the full-span stall were seen even during surge and affected the flow within the scroll through the vaneless diffuser. The experimental results were compared with those computed by the lumped parameter theory. Good agreements between them were obtained when appropriate values were selected for the lumped parameters.


Author(s):  
Jason Wilkes ◽  
Natalie Smith ◽  
Balaji Venkataraman ◽  
Marco Vagani ◽  
Sara Goucher

Abstract As centrifugal compressors are pushed to operate at higher pressures and higher power levels, destabilizing gas forces often increase the challenge of designing a stable rotordynamic system. While technical innovations like damper seals, swirl brakes, and damper bearings that help stabilize compressors are numerous, predicting the impact that these improvements will have on a specific system is somewhat of an art form. To this end, researchers are constantly improving the depth of knowledge on these features so that the impact of these improvements is well defined. In the current work, the authors experimentally measured the impact of different swirl brake/vane concepts on the flow characteristics of a centrifugal compressor shroud cavity. The eye seal configuration studied here is a tooth on rotor labyrinth eye seal. The different shroud swirl vane geometries considered consist of various castellated features, each having the intent to reduce swirl velocity in the shroud cavity prior to entering the seal. The purpose of the testing was to determine whether a significant reduction in swirl velocity entering or exiting the seal could be measured with the different anti-swirl vane profiles over a conventional shroud cavity that was tested with the same setup. The metrics that determine the effectiveness of the swirl brake were based on upstream and downstream measurements of swirl velocity using pitot-probes at different depths in the shroud cavity, and measurements of seal exit angle and velocity using a traversing cobra-probe. The test data presented herein show definitively that the different swirl brake designs, including a slotted seal, a long vane, and a short vane, have a major impact on swirl velocities relative to the conventional shroud design. The most effective at reducing swirl entering/leaving the seal is the slotted seal, while the concepts employing shroud vanes were more effective at reducing swirl in the shroud cavity.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 872 ◽  
Author(s):  
Biao Zhou ◽  
Ximing He ◽  
Hui Yang ◽  
Zuchao Zhu ◽  
Yikun Wei ◽  
...  

The steady and unsteady flow characteristics of internal flow in a backward centrifugal fan of double inlet at low flow-rate condition are investigated by computational fluid dynamics in this paper. The investigation aims to reveal insights into generation mechanisms and our physical understanding of the rotating stall and surge. The numerical results mainly demonstrate that, with decreasing flow rate, a large number of vortex flows almost increasingly occupy the internal flow of the impeller. The reverse flow and separation vortices increasingly appear near the outlet of volute, and the internal flow of the impeller is completely blocked by the separated vortex flow at low flow-rate conditions. Results indicate that, due to a synchronization of the impeller rotation and separation vortex, these separated vortices act intensely on the pressure surface of the blade with time evolution, and the interaction between the separated vortices and surface of blade increasingly yields small-scale eddies. It is further found that the amplitude of pressure and velocity fluctuations gradually increase with the decrease of flow rate in a certain range. The unsteady characteristics acting on the volute tongue gradually increase in a range of Qd to 0.3 Qd (Qd is the design volume flow rate) with the decrease of flow rate, and the unsteady characteristics acting on the volute tongue are weakened at the working condition of 0.15 Qd. These insights clearly explain the unsteady nature of the rotating stall and surge phenomenon in the double inlet backward centrifugal fan.


1988 ◽  
Vol 110 (1) ◽  
pp. 129-137 ◽  
Author(s):  
U. Haupt ◽  
M. Rautenberg ◽  
A. N. Abdel-Hamid

The mechanism of blade excitation during the operation of a high-mass-flow, high-pressure-ratio centrifugal compressor has been investigated. This was carried out in the compressor operating range below 60 percent of design speed and in the zone of unsteady flow occurrence, where considerable blade vibration has been measured but no periodic unsteady pressure pattern such as rotating stall could be identified. Experiments conducted to study the mechanism of interactions between flow and blades were accomplished using several measuring methods simultaneously, such as measurements of blade vibration, flow angle at impeller inlet, unsteady pressure at different meridional and peripheral locations, as well as flow visualization by means of oil pattern. Analysis of the measurements showed typical broad-band characteristics of the unsteady pressure field and also for the blade vibration behavior. Results of flow angle investigations at the impeller inlet together with the analysis of oil pattern show that the broad-band pressure fluctuations and blade excitation can be attributed to a strong reverse flow near the suction side of the radial blade in the shroud zone. This reverse flow has its source downstream of the impeller and is extending back up to a location ahead of the impeller inlet. Similar results were obtained when the compressor was operated with vaneless and vaned diffuser configurations.


Sign in / Sign up

Export Citation Format

Share Document