The impacts of red mud dosing on methane production and reduction of CO2: Activity of granules and formation

2021 ◽  
pp. 0958305X2098689
Author(s):  
Anwar Ahmad ◽  
Fatima Shahitha

Experiments were conducted to investigate the effect of red mud (RM) dosing on granular sludge formation, biogas production and carbon dioxide reduction from palm oil mill effluent (POME) digestion. The results show that dosing RM adversely affected sludge granulation due to the formation of precipitates and hydrolyzates with poor settleability. However, at the optimal dosage (4.5 g RM/L), it could benefit granules formation and stability by improving the in extracellular polymeric substances and biogas production rate was 87.9 l g-VSadded/d at 4.5:30 mixing ratio. The ratio of 0.5:80–2.5:50 g-VS did not affect methane production and the highest methane yield average 79.9 l/g-VS added for RM:POME of 4.5:30, 14.5 higher respective to that of POME alone only. A CO2 reduction of 89.6% was obtained at RM of 4.5:30 ( r = 0.998). The chemical oxygen demand (COD) removal was 87% obtained at 30 g COD/l and 4.5:30 g-VS with growth of sp. Methanosarcina. The process evaluation was found model cone best fitted and actual production of CH4. The evidence by low root mean square prediction error (RMSPE) showed high correlation difference (Dif. %) with predicted value and actual values. Analyses were evaluated that the POME degradation with RM utilization, substantially enhanced the hydrolysis rate (khyd), lag phase time h (λ) and methane production rate ( Rm) of mixing ratio of RM:POME. Furthermore, the system showed solid reduction with the increased production of methane.

2018 ◽  
Vol 64 (No. 3) ◽  
pp. 128-135 ◽  
Author(s):  
Radmard Seyed Abbas ◽  
Alizadeh Hossein Haji Agha ◽  
Seifi Rahman

The effects of thermal (autoclave and microwave irradiation (MW)) and thermo-chemical (autoclave and microwave irradiation – assisted NaOH 5N) pretreatments on the chemical oxygen demand (COD) solubilisation, biogas and methane production of anaerobic digestion kitchen waste (KW) were investigated in this study. The modified Gompertz equation was fitted to accurately assess and compare the biogas and methane production from KW under the different pretreatment conditions and to attain representative simulations and predictions. In present study, COD solubilisation was demonstrated as an effective effect of pretreatment. Thermo-chemical pretreatments could improve biogas and methane production yields from KW. A comprehensive evaluation indicated that the thermo-chemical pretreatments (microwave irradiation and autoclave- assisted NaOH 5N, respectively) provided the best conditions to increase biogas and methane production from KW. The most effective enhancement of biogas and methane production (68.37 and 36.92 l, respectively) was observed from MW pretreated KW along with NaOH 5N, with the shortest lag phase of 1.79  day, the max. rate of 2.38 l·day<sup>–1</sup> and ultimate biogas production of 69.8 l as the modified Gompertz equation predicted.


2020 ◽  
Vol 14 (4) ◽  
pp. 551-557
Author(s):  
Yongku Li ◽  
Xiaomin Hu ◽  
Lei Feng

The changing parameters, as the biogas production rate, the methane production rate, the cumulative biogas amount, the cumulative methane amount, the biogas composition, pH etc. in high temperature anaerobic fermentation of chicken manure and stalks were analyzed by experiments with different mass ratios of chicken manure or livestock manure and stalks with a high C/N ratio. The methane production mechanism of high temperature anaerobic digestion of chicken manure and stalks was discussed in detail. It showed that not only the biogas production rates but also the methane production rates of R1–R7 demonstrated the trend of initial increase and then decrease after 50 d of high temperature anaerobic digestion. Besides, the gas production of R1 with pure chicken manure stopped on the 30th d of the reaction. The gas production of other groups R2–R7 also stopped on the corresponding 34th, 36th, 36th, 37th, 37th, and 37th day, respectively. At the end of the reaction, the cumulative biogas amounts and the cumulative methane amounts of R1–R7 were 411.58 and 269.54, 459.91 and 314.41, 425.32 and 294.11, 401.85 and 272.54, 382.63 and 257.07, 363.04 and 218.16, and 257.15 and 160.10 N ml/(g VS). The biogas slurry pH of R1–R7 all demonstrated a trend of initial decrease and then increase, e. g., pH of R2 reached the minimum of 5.94 on the 5th day. pH values of other groups were between 6.01 and 6.39. After the addition of 4 g of sodium bicarbonate on the 7th day, biogas slurry pH of R1–R7 all increased. pH was maintained between 7.16 and 7.44 until the end of the reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1094
Author(s):  
Marco Chiappero ◽  
Francesca Cillerai ◽  
Franco Berruti ◽  
Ondřej Mašek ◽  
Silvia Fiore

Biochar (BC) recently gained attention as an additive for anaerobic digestion (AD). This work aims at a critical analysis of the effect of six BCs, with different physical and chemical properties, on the AD of mixed wastewater sludge at 37 °C, comparing their influence on methane production and AD kinetics. AD batch tests were performed at the laboratory scale operating 48 reactors (0.25 L working volume) for 28 days with the addition of 10 g L−1 of BC. Most reactors supplemented with BCs exhibited higher (up to 22%) methane yields than the control reactors (0.15 Nm3 kgVS−1). The modified Gompertz model provided maximum methane production rate values, and in all reactors the lag-phase was equal to zero days, indicating a good adaptation of the inoculum to the substrate. The potential correlations between BCs’ properties and AD performance were assessed using principal component analysis (PCA). The PCA results showed a reasonable correlation between methane production and the BCs’ O–C and H–C molar ratios, and volatile matter, and between biogas production and BCs’ pore volume, specific surface area, and fixed and total carbon. In conclusion, the physic-chemical properties of BC (specifically, hydrophobicity and morphology) showed a key role in improving the AD of mixed wastewater sludge.


2019 ◽  
Vol 20 (18) ◽  
pp. 4415 ◽  
Author(s):  
Anna Szafranek-Nakonieczna ◽  
Anna Pytlak ◽  
Jarosław Grządziel ◽  
Adam Kubaczyński ◽  
Artur Banach ◽  
...  

Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.


2017 ◽  
Vol 77 (3) ◽  
pp. 721-726
Author(s):  
Sasha D. Hafner ◽  
Johan T. Madsen ◽  
Johanna M. Pedersen ◽  
Charlotte Rennuit

Abstract Combining aerobic and anaerobic digestion in a two-stage system can improve the degradation of wastewater sludge over the use of either technology alone. But use of aerobic digestion as a pre-treatment before anaerobic digestion generally reduces methane production due to loss of substrate through oxidation. An inter-stage configuration may avoid this reduction in methane production. Here, we evaluated the use of thermophilic aerobic digestion (TAD) as an inter-stage treatment for wastewater sludge using laboratory-scale semi-continuous reactors. A single anaerobic digester was compared to an inter-stage system, where a thermophilic aerobic digester (55 °C) was used between two mesophilic anaerobic digesters (37 °C). Both systems had retention times of approximately 30 days, and the comparison was based on measurements made over 97 days. Results showed that the inter-stage system provided better sludge destruction (52% volatile solids (VS) removal vs. 40% for the single-stage system, 44% chemical oxygen demand (COD) removal vs. 34%) without a decrease in total biogas production (methane yield per g VS added was 0.22–0.24 L g−1 for both systems).


2012 ◽  
Vol 66 (2) ◽  
pp. 438-444 ◽  
Author(s):  
Sheng Zhou ◽  
Hiroshi Iino ◽  
Yutaka Nakashimada ◽  
Masaaki Hosomi

Fertilizing livestock waste for forage rice production can remove nitrogen and reduce the need for chemical fertilizers. Furthermore, rice straw can be used for biogas production. Here, the growth characteristics of different forage rice varieties in Japanese paddy fields fertilized with liquid cattle waste were investigated. Six experimental plots were established in a paddy field planted with three varieties of forage rice developed for livestock feed. Methane production potential assays were then conducted to investigate the anaerobic digestion characteristics of the stems and leaves of these three varieties. The total methane production potential of the Leafstar variety was higher than that of other varieties, while its lag phase was significantly shorter. Co-digestion of ethanol fermentation residue with Leafstar straw revealed that the NH4+-N concentration decreased as the C/N ratio increased. Additionally, the methane production potential of the mixed substrate was higher than that of ethanol fermentation residue or forage rice straw applied alone. Hence, Leafstar forage rice is a promising variety for establishment of agricultural resource recycling systems in which higher straw biomass can be achieved by applying liquid cattle waste and more biogas can be produced due to the potential for increased methane production.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2223
Author(s):  
Zhi Wang ◽  
Ying Guo ◽  
Weiwei Wang ◽  
Liumeng Chen ◽  
Yongming Sun ◽  
...  

Anaerobic digestion with corn straw faces the problems of difficult degradation, long fermentation time and acid accumulation in the high concentration of feedstocks. In order to speed up the process of methane production, corn straw treated with sodium hydroxide was used in thermophilic (50 °C) anaerobic digestion, and the effects of biochar addition on the performance of methane production and the microbial community were analyzed. The results showed that the cumulative methane production of all treatment groups reached over 75% of the theoretical methane yield in 7 days and the addition of 4% biochar increased the cumulative methane production by 6.75% compared to the control group. The addition of biochar also decreased the number of biogas and methane production peaks from 2 to 1, and had a positive effect on shortening the digestion start-up period and reducing the fluctuation of biogas production during the digestion process. The addition of 4% biochar increased the abundance of the bacterial family Peptococcaceae throughout the digestion period, promoting the hydrolysis rate of corn straw. The dominant archaeal genus Methanosarcina was significantly more abundant at the peak stage and the end of methane production with 4% biochar added compared to the control group.


2017 ◽  
Vol 76 (6) ◽  
pp. 1308-1317 ◽  
Author(s):  
Rong Chen ◽  
Yulun Nie ◽  
Jiayuan Ji ◽  
Tetsuya Utashiro ◽  
Qian Li ◽  
...  

A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH4/gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. &gt;12 hours, while cake layer dominated significantly at shorter HRTs, i.e. &lt;8 hours.


2017 ◽  
Vol 68 (6) ◽  
pp. 1294-1297 ◽  
Author(s):  
Gabriela Alina Dumitrel ◽  
Adrian Eugen Cioabla ◽  
Ioana Ionel ◽  
Lucia Ana Varga

Anaerobic digestion processes of agricultural resources, as single substrates (wheat bran and barley) or as combination of substrates (75 % corn&25% corn cob � named MIX1 and 40 % corn & 40 % wheat&20 % sunflower husks � named MIX2), were performed, at a mesophilic temperature in a batch reactor, at pilot scale. The results proved that the higher quantity of biogas yield was achieved for barley, followed by MIX1, and finally MIX2. The same order was obtained when the total methane production was evaluated. The performances of digesters were mathematically evaluated by using the modified Gompertz equation. The kinetic parameters, such as the methane production potential (MP), the maximum methane production rate (Rm) and the extent of lag phase (l) were calculated, for each experimental case. The values of the performance indicators confirmed that all the models fitted well with the experimental data.


Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 618 ◽  
Author(s):  
Yu-Chun Chou ◽  
Jung-Jeng Su

Excessive sludge in the wastewater treatment basins has to be removed periodically and collected as the form of sludge cake for promising good water quality of the effluent. This study aims to evaluate the feasibility of biogas production by anaerobic co-digestion of dairy cattle wastewater and crude glycerol from transesterification of sludge cake. Different ratios of crude glycerol, i.e., 2, 4, and 8% (v/v), from the previous experiment were mixed with dairy cattle wastewater and inoculated with anaerobic sludge in cap-sealed 1-L serum bottles as anaerobic digesters. Although the 8% crude glycerol set showed the highest total biogas and methane production, low pH from volatile fatty acid accumulation decreased the removal efficiency of chemical oxygen demand, biochemical oxygen demand, and suspended solids after a 14-d incubation period. The experimental sets with 2 and 4% of crude glycerol increased total methane production up to 177 and 226% compared to the control set, respectively. We found that addition of crude glycerol decreased removal efficiency of total solids and volatile solids. In our study, we proved that slaughterhouse sludge cake is a feasible feedstock for producing biogas through transesterification and anaerobic co-digestion.


Sign in / Sign up

Export Citation Format

Share Document