scholarly journals Proxy reconstruction of ultraviolet-B irradiance at the Earth’s surface, and its relationship with solar activity and ozone thickness

The Holocene ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Phillip E Jardine ◽  
Wesley T Fraser ◽  
William D Gosling ◽  
C Neil Roberts ◽  
Warren J Eastwood ◽  
...  

Solar ultraviolet-B (UV-B) irradiance that reaches the Earth’s surface acts as a biotic stressor and has the potential to modify ecological and environmental functioning. The challenges of reconstructing ultraviolent (UV) irradiance prior to the satellite era mean that there is uncertainty over long-term surface UV-B patterns, especially in relation to variations in solar activity over centennial and millennial timescales. Here, we reconstruct surface UV-B irradiance over the last 650 years using a novel UV-B proxy based on the chemical signature of pollen grains. We demonstrate a statistically significant positive relationship between the abundance of UV-B absorbing compounds in Pinus pollen and modelled solar UV-B irradiance. These results show that trends in surface UV-B follow the overall solar activity pattern over centennial timescales, and that variations in solar output are the dominant control on surface level UV-B flux, rather than solar modulated changes in ozone thickness. The Pinus biochemical response demonstrated here confirms the potential for solar activity driven surface UV-B variations to impact upon terrestrial biotas and environments over long timescales.

2020 ◽  
Vol 645 ◽  
pp. A2
Author(s):  
M. Meftah ◽  
M. Snow ◽  
L. Damé ◽  
D. Bolseé ◽  
N. Pereira ◽  
...  

Context. Solar spectral irradiance (SSI) is the wavelength-dependent energy input to the top of the Earth’s atmosphere. Solar ultraviolet (UV) irradiance represents the primary forcing mechanism for the photochemistry, heating, and dynamics of the Earth’s atmosphere. Hence, both temporal and spectral variations in solar UV irradiance represent crucial inputs to the modeling and understanding of the behavior of the Earth’s atmosphere. Therefore, measuring the long-term solar UV irradiance variations over the 11-year solar activity cycle (and over longer timescales) is fundamental. Thus, each new solar spectral irradiance dataset based on long-term observations represents a major interest and can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous solar spectral irradiance record. Aims. The main objective of this article is to present a new solar spectral irradiance database (SOLAR-v) with the associated uncertainties. This dataset is based on solar UV irradiance observations (165−300 nm) of the SOLAR/SOLSPEC space-based instrument, which provides measurements of the full-disk SSI during solar cycle 24. Methods. SOLAR/SOLSPEC made solar acquisitions between April 5, 2008 and February 10, 2017. During this period, the instrument was affected by the harsh space environment that introduces instrumental trends (degradation) in the SSI measurements. A new method based on an adaptation of the Multiple Same-Irradiance-Level (MuSIL) technique was used to separate solar variability and any uncorrected instrumental trends in the SOLAR/SOLSPEC UV irradiance measurements. Results. A new method for correcting degradation has been applied to the SOLAR/SOLSPEC UV irradiance records to provide new solar cycle variability results during solar cycle 24. Irradiances are reported at a mean solar distance of 1 astronomical unit (AU). In the 165−242 nm spectral region, the SOLAR/SOLSPEC data agrees with the observations (SORCE/SOLSTICE) and models (SATIRE-S, NRLSSI 2) to within the 1-sigma error envelope. Between 242 and 300 nm, SOLAR/SOLSPEC agrees only with the models.


1994 ◽  
Vol 143 ◽  
pp. 72-72 ◽  
Author(s):  
Guenter Brueckner ◽  
Linton E. Floyd ◽  
Paul A. Lund ◽  
Dianne K. Prinz ◽  
Michael E. Vanhoosier

The SUSIM (Solar Ultraviolet Spectral Irradiance Monitor) on board the UARS (Upper Atmosphere Research Satellite) has measured the solar UV output from 120 nm to 400 nm on a daily basis since October 1991. A reference channel records a solar spectrum semi-annually only to reduce the instrument degradation of this channel and to provide long-term stability marks. Four deuterium lamps are used at monthly, semi-annual and annual intervals to provide long term calibration of the instrument. A preliminary analysis of the long term stability of SUSIM-UARS indicates that the precision of the instrument should be better than a few percent. The repeatability of two scans is better than 0.2%. A simplified SUSIM instrument is flying on NASA’s ATLAS Spacelab missions anually to provide calibration points for the SUSIM-UARS.


2011 ◽  
Vol 23 (4) ◽  
pp. 389-398 ◽  
Author(s):  
Vito Vitale ◽  
Boyan Petkov ◽  
Florence Goutail ◽  
Christian Lanconelli ◽  
Angelo Lupi ◽  
...  

AbstractThe features of solar UV irradiance measured at the Italian-French Antarctic Plateau station, Concordia, during the springs of 2008 and 2009 are presented and discussed. In order to study the impact of the large springtime variations in total ozone column on the fraction of ultraviolet B (UV-B) irradiance (fromc.290–315 nm) reaching the Earth surface, irradiance datasets corresponding to fixed solar zenith angles (SZAs = 65°, 75° and 85°) are correlated to the daily ozone column provided by different instruments. For these SZAs the radiation amplification factor varied from 1.58–1.94 at 306 nm and from 0.68–0.88 at 314 nm. The ultraviolet index reached a maximum level of 8 in the summer, corresponding to the typical average summer value for mid latitude sites. The solar irradiance pertaining to the ultraviolet A (UV-A, 315–400 nm) spectral band was found to depend closely on variations of atmospheric transmittance characteristics as reported by previous studies. Model simulations of UV-B irradiance showed a good agreement with field measurements at 65° and 75° SZAs. For SZA = 85° the ozone vertical distribution significantly impacted model estimations. Sensitivity analysis performed by hypothetically varying the ozone distribution revealed some features of the ozone profiles that occurred in the period studied here.


1997 ◽  
Vol 54 (3) ◽  
pp. 697-704 ◽  
Author(s):  
H Maske ◽  
M Latasa

The ultraviolet (UV) spectral component of daylight on a clear day at mid-latitudes can significantly reduce phytoplankton pigments within a daylight period. Phytoplankton samples from Redberry Lake, Saskatchewan, dominated by cyanobacteria were incubated in quartz bottles under optical long band-pass filters (cutoff wavelength 420-305 nm) in daylight in June. After incubation, samples were filtered, and in vivo particle light absorption (380-700 nm) and pigment concentrations were measured. Solar ultraviolet-B irradiance (UV-B; 280-320 nm) was measured radiometrically. On sunny days the samples that were exposed to daylight UV light showed a relative decrease in particle absorption and pigment concentration after the incubation compared with samples exposed only to visible daylight. No such decrease was observed during an overcast day. The UV-B data did not show a clear relation with the degree of pigment reduction, suggesting that other environmental factors or the state of adaptation partially controlled the pigment decrease of phytoplankton under UV-B exposure. Neither specific spectral components of the absorption spectrum nor specific pigments were more easily degraded than others by solar UV light, although the ratio of zeaxanthin to chlorophyll a probably increased in cyanobacteria as a result of UV exposure.


2017 ◽  
Vol 49 (6) ◽  
pp. 1601979 ◽  
Author(s):  
Tjarda M. Boere ◽  
Douwe H. Visser ◽  
A. Marceline van Furth ◽  
Paul Lips ◽  
Frank G.J. Cobelens

Epidemiological evidence supports vitamin D deficiency as a risk factor for tuberculosis. Differences in solar ultraviolet B (UV-B) exposure, the major source of vitamin D, might therefore partially explain global variation in tuberculosis incidence.In a global country-based ecological study, we explored the correlation between vitamin D-proxies, such as solar UV-B exposure, and other relevant variables with tuberculosis incidence, averaged over the period 2004–2013.Across 154 countries, annual solar UV-B exposure was associated with tuberculosis incidence. Tuberculosis incidence in countries in the highest quartile of UV-B exposure was 78% (95% CI 57–88%, p<0.001) lower than that in countries in the lowest quartile, taking into account other vitamin D-proxies and covariates. Of the explained global variation in tuberculosis incidence, 6.3% could be attributed to variations in annual UV-B exposure. Exposure to UV-B had a similar, but weaker association with tuberculosis notification rates in the multilevel analysis with sub-national level data for large countries (highestversuslowest quartile 29% lower incidence; p=0.057).The potential preventive applications of vitamin D supplementation in high-risk groups for tuberculosis merits further investigation.


2018 ◽  
Vol 14 (1) ◽  
pp. 200-205
Author(s):  
Niranjan Prasad Sharma

The main objective of this research is to study the satellite estimated solar Ultraviolet data alongside the ground based data in Nepal. Kathmandu (27.72°N, 85.32°>E), Pokhara (28.22°N, 83.32°E) Biratnagar (26.45°N, 87.27°E) and Lukla (27.69°N, 86.73°E) are located at an elevation of 1350m, 800m, 72m and 2850m respectively from the sea level. The ground based measurements and the satellite estimation were performed by NILU-UV irradiance meter and EOS Aura OMI satellite respectively. The NILU-UV irradiance meter is a six channel radiometer designed to measure hemispherical irradiances on a flat surface. Meanwhile the Ozone Monitoring Instrument (OMI) on board, the NASA EOS Aura space craft is a nadir viewing spectrometer that measures solar reflected and back scattered light in ultraviolet and visible spectrum. The study was performed for 3 years Ultraviolet Radiation (UVR) data. This study showed that the ratio of predicted OMI Ultraviolet Index (UVI) to that determined from the ground based measurement was less than 1.21 except in Lukla.Journal of the Institute of Engineering, 2018, 14(1): 200-205


2016 ◽  
Vol 16 (4) ◽  
pp. 2493-2505 ◽  
Author(s):  
Ilias Fountoulakis ◽  
Alkiviadis F. Bais ◽  
Konstantinos Fragkos ◽  
Charickleia Meleti ◽  
Kleareti Tourpali ◽  
...  

Abstract. In this study, we discuss the short- and the long-term variability of spectral UV irradiance at Thessaloniki, Greece, using a long, quality-controlled data set from two Brewer spectrophotometers. Long-term changes in spectral UV irradiance at 307.5, 324 and 350 nm for the period 1994–2014 are presented for different solar zenith angles and discussed in association with changes in total ozone column (TOC), aerosol optical depth (AOD) and cloudiness observed in the same period. Positive changes in annual mean anomalies of UV irradiance, ranging from 2 to 6 % per decade, have been detected both for clear- and all-sky conditions. The changes are generally greater for larger solar zenith angles and for shorter wavelengths. For clear-skies, these changes are, in most cases, statistically significant at the 95 % confidence limit. Decreases in the aerosol load and weakening of the attenuation by clouds lead to increases in UV irradiance in the summer, of 7–9 % per decade for 64° solar zenith angle. The increasing TOC in winter counteracts the effect of decreasing AOD for this particular season, leading to small, statistically insignificant, negative long-term changes in irradiance at 307.5 nm. Annual mean UV irradiance levels are increasing from 1994 to 2006 and remain relatively stable thereafter, possibly due to the combined changes in the amount and optical properties of aerosols. However, no statistically significant corresponding turning point has been detected in the long-term changes of AOD. The absence of signatures of changes in AOD in the short-term variability of irradiance in the UV-A may have been caused by changes in the single scattering albedo of aerosols, which may counteract the effects of changes in AOD on irradiance. The anti-correlation between the year-to-year variability of the irradiance at 307.5 nm and TOC is clear and becomes clearer as the AOD decreases.


Sign in / Sign up

Export Citation Format

Share Document