Late-Holocene fluctuations of monsoonal Qiangyong Glacier, southern Tibetan Plateau

The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Xiaolong Zhang ◽  
Baiqing Xu ◽  
Jiule Li ◽  
Ying Xie ◽  
Gerd Gleixner

Glaciers on the Tibetan Plateau (TP) are reliable water sources for Asia. Continuously high-resolution and high-accuracy long-term glacier fluctuations have been examined to improve the reliability of predictions regarding future TP glacier behavior under global climate change. In this study, we analyzed physiochemical parameters in typical glaciolacustrine sediments to reconstruct multidecadal activities of the monsoonal Qiangyong Glacier over the past ~2500 years. The results show that the glacier advanced most strongly during 560 BC–AD 100, followed by AD 1050–1850 and AD 600–850. It retreated most severely during AD 1850–present, followed by AD 100–600 and AD 850–1050. This continuous record corresponds well with changes in the temperature and regional precipitation before the Current Warm Period, exhibiting “warm-humid-retreat” and “cold-dry-advance” patterns. This indicates that temperature changes, rather than precipitation variations, control the monsoonal glaciers at the southern TP at multidecadal to centennial scales. As global warming continues, although the precipitation on the southern TP is projected to increase, the mass loss of TP monsoonal glaciers is expected to continue.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yi Sun ◽  
Quanliang Chen ◽  
Ke Gui ◽  
Fangyou Dong ◽  
Xiao Feng ◽  
...  

Water vapor (WV) has a vital effect on global climate change. Using satellite data observed by AURA/MLS and ERA-Interim reanalysis datasets, the spatial distributions and temporal variations of WV were analyzed. It was found that high WV content in the UTLS over the southern Tibetan Plateau is more apparent in summer, due to monsoon-induced strong upward motions. The WV content showed the opposite distribution at 100 hPa, though, during spring and winter. And a different distribution at 121 hPa indicated that the difference in WV content between the northern and southern plateau occurs between 121 and 100 hPa in spring and between 147 and 121 hPa in winter. In the UTLS, it diminishes rapidly with increase in altitude in these two seasons, and it shows a “V” structure in winter. There has been a weak increasing trend in WV at 100 hPa, but a downtrend at 147 and 215 hPa, during the past 12 years. At the latter two heights, the WV content in summer has been much higher than in other seasons. Furthermore, WV variation showed a rough wave structure in spring and autumn at 215 hPa. The variation of WV over the Tibetan Plateau is helpful in understanding the stratosphere-troposphere exchange (STE) and climate change.



2020 ◽  
Author(s):  
Yaoming Ma ◽  
Zeyong Hu ◽  
Zhipeng Xie ◽  
Weiqiang Ma ◽  
Binbin Wang ◽  
...  

Abstract. The Tibetan Plateau (TP) plays a critical role in influencing regional and global climate, via both thermal and dynamical mechanisms. Meanwhile, as the largest high-elevation part of the cryosphere outside the polar regions, with vast areas of mountain glaciers, permafrost and seasonally frozen ground, the TP is characterized as an area sensitive to global climate change. However, meteorological stations are sparely and biased distributed over the TP, owing to the harsh environmental conditions, high elevations, complex topography, and heterogeneous surfaces. Moreover, due to the weak representative of the stations, atmospheric conditions and the local land-atmosphere coupled system over the TP as well as its effects on surrounding regions are poorly quantified. This paper presents a long-term (2005–2016) dataset of hourly land-atmosphere interaction observations from an integrated high-elevation, cold region observation network, which is composed of six field observation and research platforms on the TP. In-situ observations, at the hourly resolution, consisting of measurements of micrometeorology, surface radiation, eddy covariance (EC), and soil temperature and soil water content profiles. Meteorological data were monitored by automatic weather station (AWS) or a planetary boundary layer (PBL) observation system composed of multiple meteorological element instruments. Multilayer soil hydrothermal data were recorded to capture vertical variations in soil temperature and water content and to study the freeze-thaw processes. In addition, to capture the high-frequency vertical exchanges of energy, momentum, water vapor and carbon dioxide within the atmospheric boundary layer, an EC system consisting of an ultrasonic anemometer and an infrared gas analyzer was installed at each station. The release of these continuous and long-term datasets with hourly time resolution represents a leap forward in scientific data sharing over the TP, and it has been partially used in the past to assist in understanding key land surface processes. This dataset is described here comprehensively for facilitating a broader multidisciplinary community by enabling the evaluation and development of existing or new remote sensing algorithms as well as geophysical models for climate research and forecasting. The whole datasets are freely available at Science Data Bank (http://www.dx.doi.org/10.11922/sciencedb.00103, Ma et al., 2020) and, additionally at the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/en/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/).



2020 ◽  
Vol 6 (19) ◽  
pp. eaay6193 ◽  
Author(s):  
Yan Zhao ◽  
Polychronis C. Tzedakis ◽  
Quan Li ◽  
Feng Qin ◽  
Qiaoyu Cui ◽  
...  

The Tibetan Plateau exerts a major influence on Asian climate, but its long-term environmental history remains largely unknown. We present a detailed record of vegetation and climate changes over the past 1.74 million years in a lake sediment core from the Zoige Basin, eastern Tibetan Plateau. Results show three intervals with different orbital- and millennial-scale features superimposed on a stepwise long-term cooling trend. The interval of 1.74–1.54 million years ago is characterized by an insolation-dominated mode with strong ~20,000-year cyclicity and quasi-absent millennial-scale signal. The interval of 1.54–0.62 million years ago represents a transitional insolation-ice mode marked by ~20,000- and ~40,000-year cycles, with superimposed millennial-scale oscillations. The past 620,000 years are characterized by an ice-driven mode with 100,000-year cyclicity and less frequent millennial-scale variability. A pronounced transition occurred 620,000 years ago, as glacial cycles intensified. These new findings reveal how the interaction of low-latitude insolation and high-latitude ice-volume forcing shaped the evolution of the Tibetan Plateau climate.



Beskydy ◽  
2017 ◽  
Vol 10 (1-2) ◽  
pp. 113-122
Author(s):  
Irena Marková ◽  
Dalibor Janouš ◽  
Ondřej Nezval

Global climate change (including temperature changes) had already observable effects on the environment and humanity. Air temperature characteristics have been observed at the mountain study site of Bílý Kříž (the Beskids Mts., Czech Republic) since 1989. This paper presents an analysis of long-term (1997–2016) air temperature conditions at this study. Comparison is made of selected long-term mean air temperature characteristics with mean air temperature characteristics for the period 1997–2016. The results show slightly increasing air temperature, as indicated not only by values for mean annual air temperature but also by changes in number of extreme days (summer, tropical, ice, etc.) and occurrence of hot period. Moreover, the length of the growth season has increase slightly.



2020 ◽  
Vol 12 (4) ◽  
pp. 2937-2957
Author(s):  
Yaoming Ma ◽  
Zeyong Hu ◽  
Zhipeng Xie ◽  
Weiqiang Ma ◽  
Binbin Wang ◽  
...  

Abstract. The Tibetan Plateau (TP) plays a critical role in influencing regional and global climate, via both thermal and dynamical mechanisms. Meanwhile, as the largest high-elevation part of the cryosphere outside the polar regions, with vast areas of mountain glaciers, permafrost and seasonally frozen ground, the TP is characterized as an area sensitive to global climate change. However, meteorological stations are biased and sparsely distributed over the TP, owing to the harsh environmental conditions, high elevations, complex topography and heterogeneous surfaces. Moreover, due to the weak representation of the stations, atmospheric conditions and the local land–atmosphere coupled system over the TP as well as its effects on surrounding regions are poorly quantified. This paper presents a long-term (2005–2016) in situ observational dataset of hourly land–atmosphere interaction observations from an integrated high-elevation and cold-region observation network, composed of six field stations on the TP. These in situ observations contain both meteorological and micrometeorological measurements including gradient meteorology, surface radiation, eddy covariance (EC), soil temperature and soil water content profiles. Meteorological data were monitored by automatic weather stations (AWSs) or planetary boundary layer (PBL) observation systems. Multilayer soil temperature and moisture were recorded to capture vertical hydrothermal variations and the soil freeze–thaw process. In addition, an EC system consisting of an ultrasonic anemometer and an infrared gas analyzer was installed at each station to capture the high-frequency vertical exchanges of energy, momentum, water vapor and carbon dioxide within the atmospheric boundary layer. The release of these continuous and long-term datasets with hourly resolution represents a leap forward in scientific data sharing across the TP, and it has been partially used in the past to assist in understanding key land surface processes. This dataset is described here comprehensively for facilitating a broader multidisciplinary community by enabling the evaluation and development of existing or new remote sensing algorithms as well as geophysical models for climate research and forecasting. The whole datasets are freely available at the Science Data Bank (https://doi.org/10.11922/sciencedb.00103; Ma et al., 2020) and additionally at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Meteoro.tpdc.270910, Ma 2020).



2009 ◽  
Vol 69 (1-2) ◽  
pp. 71-78 ◽  
Author(s):  
Bao Yang ◽  
Achim Bräuning ◽  
Jingjing Liu ◽  
Mary E. Davis ◽  
Shao Yajun


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.



2021 ◽  
pp. 1-9
Author(s):  
Feng Shi ◽  
Anmin Duan ◽  
Qiuzhen Yin ◽  
John T Bruun ◽  
Cunde Xiao ◽  
...  

Abstract The Qinghai–Tibetan Plateau and Arctic both have an important influence on global climate, but the correlation between climate variations in these two regions remains unclear. Here we reconstructed and compared the summer temperature anomalies over the past 1,120 yr (900–2019 CE) in the Qinghai–Tibetan Plateau and Arctic. The temperature correlation during the past millennium in these two regions has a distinct centennial variation caused by volcanic eruptions. Furthermore, the abrupt weak-to-strong transition in the temperature correlation during the sixteenth century could be analogous to this type of transition during the Modern Warm Period. The former was forced by volcanic eruptions, while the latter was controlled by changes in greenhouse gases. This implies that anthropogenic, as opposed to natural, forcing has acted to amplify the teleconnection between the Qinghai–Tibetan Plateau and Arctic during the Modern Warm Period.



Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.



Sign in / Sign up

Export Citation Format

Share Document