scholarly journals A long-term (2005–2016) dataset of integrated land–atmosphere interaction observations on the Tibetan Plateau

Author(s):  
Yaoming Ma ◽  
Zeyong Hu ◽  
Zhipeng Xie ◽  
Weiqiang Ma ◽  
Binbin Wang ◽  
...  

Abstract. The Tibetan Plateau (TP) plays a critical role in influencing regional and global climate, via both thermal and dynamical mechanisms. Meanwhile, as the largest high-elevation part of the cryosphere outside the polar regions, with vast areas of mountain glaciers, permafrost and seasonally frozen ground, the TP is characterized as an area sensitive to global climate change. However, meteorological stations are sparely and biased distributed over the TP, owing to the harsh environmental conditions, high elevations, complex topography, and heterogeneous surfaces. Moreover, due to the weak representative of the stations, atmospheric conditions and the local land-atmosphere coupled system over the TP as well as its effects on surrounding regions are poorly quantified. This paper presents a long-term (2005–2016) dataset of hourly land-atmosphere interaction observations from an integrated high-elevation, cold region observation network, which is composed of six field observation and research platforms on the TP. In-situ observations, at the hourly resolution, consisting of measurements of micrometeorology, surface radiation, eddy covariance (EC), and soil temperature and soil water content profiles. Meteorological data were monitored by automatic weather station (AWS) or a planetary boundary layer (PBL) observation system composed of multiple meteorological element instruments. Multilayer soil hydrothermal data were recorded to capture vertical variations in soil temperature and water content and to study the freeze-thaw processes. In addition, to capture the high-frequency vertical exchanges of energy, momentum, water vapor and carbon dioxide within the atmospheric boundary layer, an EC system consisting of an ultrasonic anemometer and an infrared gas analyzer was installed at each station. The release of these continuous and long-term datasets with hourly time resolution represents a leap forward in scientific data sharing over the TP, and it has been partially used in the past to assist in understanding key land surface processes. This dataset is described here comprehensively for facilitating a broader multidisciplinary community by enabling the evaluation and development of existing or new remote sensing algorithms as well as geophysical models for climate research and forecasting. The whole datasets are freely available at Science Data Bank (http://www.dx.doi.org/10.11922/sciencedb.00103, Ma et al., 2020) and, additionally at the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/en/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/).

2020 ◽  
Vol 12 (4) ◽  
pp. 2937-2957
Author(s):  
Yaoming Ma ◽  
Zeyong Hu ◽  
Zhipeng Xie ◽  
Weiqiang Ma ◽  
Binbin Wang ◽  
...  

Abstract. The Tibetan Plateau (TP) plays a critical role in influencing regional and global climate, via both thermal and dynamical mechanisms. Meanwhile, as the largest high-elevation part of the cryosphere outside the polar regions, with vast areas of mountain glaciers, permafrost and seasonally frozen ground, the TP is characterized as an area sensitive to global climate change. However, meteorological stations are biased and sparsely distributed over the TP, owing to the harsh environmental conditions, high elevations, complex topography and heterogeneous surfaces. Moreover, due to the weak representation of the stations, atmospheric conditions and the local land–atmosphere coupled system over the TP as well as its effects on surrounding regions are poorly quantified. This paper presents a long-term (2005–2016) in situ observational dataset of hourly land–atmosphere interaction observations from an integrated high-elevation and cold-region observation network, composed of six field stations on the TP. These in situ observations contain both meteorological and micrometeorological measurements including gradient meteorology, surface radiation, eddy covariance (EC), soil temperature and soil water content profiles. Meteorological data were monitored by automatic weather stations (AWSs) or planetary boundary layer (PBL) observation systems. Multilayer soil temperature and moisture were recorded to capture vertical hydrothermal variations and the soil freeze–thaw process. In addition, an EC system consisting of an ultrasonic anemometer and an infrared gas analyzer was installed at each station to capture the high-frequency vertical exchanges of energy, momentum, water vapor and carbon dioxide within the atmospheric boundary layer. The release of these continuous and long-term datasets with hourly resolution represents a leap forward in scientific data sharing across the TP, and it has been partially used in the past to assist in understanding key land surface processes. This dataset is described here comprehensively for facilitating a broader multidisciplinary community by enabling the evaluation and development of existing or new remote sensing algorithms as well as geophysical models for climate research and forecasting. The whole datasets are freely available at the Science Data Bank (https://doi.org/10.11922/sciencedb.00103; Ma et al., 2020) and additionally at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Meteoro.tpdc.270910, Ma 2020).


2021 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Binbin Wang ◽  
Lei Zhong ◽  
Weiqiang Ma ◽  
...  

Abstract. Terrestrial actual evapotranspiration (ETa) is a key parameter controlling the land-atmosphere interaction processes and the water cycle. However, the spatial distribution and temporal changes of ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Validation against data from six eddy-covariance monitoring sites yielded a root mean square errors ranging from 9.3 to 14.5 mm mo−1, and correlation coefficients exceeding 0.9. The domain mean of annual ETa on the TP decreased slightly (−1.45 mm yr−1, p 


The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Xiaolong Zhang ◽  
Baiqing Xu ◽  
Jiule Li ◽  
Ying Xie ◽  
Gerd Gleixner

Glaciers on the Tibetan Plateau (TP) are reliable water sources for Asia. Continuously high-resolution and high-accuracy long-term glacier fluctuations have been examined to improve the reliability of predictions regarding future TP glacier behavior under global climate change. In this study, we analyzed physiochemical parameters in typical glaciolacustrine sediments to reconstruct multidecadal activities of the monsoonal Qiangyong Glacier over the past ~2500 years. The results show that the glacier advanced most strongly during 560 BC–AD 100, followed by AD 1050–1850 and AD 600–850. It retreated most severely during AD 1850–present, followed by AD 100–600 and AD 850–1050. This continuous record corresponds well with changes in the temperature and regional precipitation before the Current Warm Period, exhibiting “warm-humid-retreat” and “cold-dry-advance” patterns. This indicates that temperature changes, rather than precipitation variations, control the monsoonal glaciers at the southern TP at multidecadal to centennial scales. As global warming continues, although the precipitation on the southern TP is projected to increase, the mass loss of TP monsoonal glaciers is expected to continue.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.


2020 ◽  
Author(s):  
Hongru Yan ◽  
Jianping Huang ◽  
Yongli He ◽  
Yuzhi Liu ◽  
Tianhe Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoliang Zhang ◽  
Zhengfu Guo ◽  
Sheng Xu ◽  
Peter H. Barry ◽  
Yuji Sano ◽  
...  

AbstractThe episodic growth of high-elevation orogenic plateaux is controlled by a series of geodynamic processes. However, determining the underlying mechanisms that drive plateau growth dynamics over geological history and constraining the depths at which growth originates, remains challenging. Here we present He-CO2-N2 systematics of hydrothermal fluids that reveal the existence of a lithospheric-scale fault system in the southeastern Tibetan Plateau, whereby multi-stage plateau growth occurred in the geological past and continues to the present. He isotopes provide unambiguous evidence for the involvement of mantle-scale dynamics in lateral expansion and localized surface uplift of the Tibetan Plateau. The excellent correlation between 3He/4He values and strain rates, along the strike of Indian indentation into Asia, suggests non-uniform distribution of stresses between the plateau boundary and interior, which modulate southeastward growth of the Tibetan Plateau within the context of India-Asia convergence. Our results demonstrate that deeply-sourced volatile geochemistry can be used to constrain deep dynamic processes involved in orogenic plateau growth.


2017 ◽  
Author(s):  
Bin Chen ◽  
Bärbel Vogel ◽  
Xiangde Xu ◽  
Shuai Yang

Abstract. The Asian summer monsoon (ASM) is associated with an upper-level anticyclone and acts as a well-recognized conduit for troposphere-to-stratosphere transport. The Lagrangian dispersion and transport model FLEXPART forced by ERA-Interim data from 2001–2013 was used to perform climatological modeling of the summer season (May–July). This study examines the properties of the air mass transport from the atmospheric boundary layer (BL) to the tropopause layer (TL), with particular focus on the sub-seasonal variability in the tracer-independent BL sources and the potential controlling mechanisms. The results show that, climatologically, the three most impactful BL source regions are northern India, the Tibetan Plateau, and the southern slope of the Himalayas. These regions are consistent with the locations of sources identified in previous studies. However, upon closer inspection, the different source regions to the BL-to-TL air mass transport are not constant in location or shape and are strongly affected by sub-seasonal variability. The contributions from the Tibetan Plateau are most significant in early May but decrease slightly in mid-May to mid-June. In contrast, the contributions from India and the southern slope of the Himalayas increase dramatically, with peak values occurring in mid-July. Empirical Orthogonal Function (EOF) analysis provides further evidence that the BL sources in the ASM region vary across a wide range of spatiotemporal scales. The sub-seasonal behavior of these BL sources is closely related to the strength of persistent deep convection activity over the northern Bay of Bengal and its neighboring areas.


Sign in / Sign up

Export Citation Format

Share Document