Characterization of urinary biomarkers and their relevant mechanisms of zoledronate-induced nephrotoxicity using rats and HK-2 cells

2019 ◽  
Vol 38 (5) ◽  
pp. 598-609
Author(s):  
Z Lan ◽  
K Chai ◽  
Y Jiang ◽  
X Liu

The aim of this study was to identify biomarkers of zoledronate-induced nephrotoxicity and to further characterize the mechanisms underlying this process by analyzing urinary metabolites. Twenty-four rats were randomly divided into four groups containing four (two control groups) or eight rats (two zoledronate groups) per group. The rats were injected intravenously with saline or zoledronate (3 mg/kg) singly (single, 3 weeks) or repeatedly eight times (3 weeks/time, 24 weeks). Serum blood urea nitrogen, serum creatinine, creatinine clearance, and kidney injury observed by hematoxylin and eosin and immunohistochemical staining were changed only in the repeated zoledronate group (3 mg/kg, 3 weeks/time, 24 weeks). Urinary levels of S-adenosylmethionine, S-adenosylhomocysteine, l-cystathionine, l-γ-glutamylcysteine, and glutathione related to glutathione metabolism and fumaric acid and succinic acid related to the tricarboxylic acid cycle in the zoledronate-treated group (3 mg/kg, 3 weeks/time, 24 weeks) were significantly lower than those in the control group, suggesting that zoledronate may cause cellular oxidative stress. Besides, urinary levels of uracil and uridine related to pyrimidine metabolism also decreased after zoledronate treatment (3 mg/kg, 3 weeks/time, 24 weeks), while the levels of hypoxanthine related to purine metabolism, histamine related to histamine metabolism, and several amino acids were significantly increased. Moreover, zoledronate-induced enhanced oxidative stress and histamine overproduction were confirmed by reactive oxygen species (ROS) and histamine measurement in a human proximal tubular cell line. Taken together, zoledronate-induced nephrotoxicity may be attributed to it inducing perturbations in glutathione biosynthesis and the tricarboxylic acid cycle, further causing ROS overproduction, oxidative stress, and cellular inflammation, thereby leading to nephrotoxicity.

2012 ◽  
Vol 93 (4) ◽  
pp. 580-584
Author(s):  
I V Sergeeva ◽  
N I Kamzalakova ◽  
E P Tikhonova ◽  
G V Bulygin

Aim. To assess the nature and intensity of metabolic processes in lymphocytes of patients with influenza according to the activity of intracellular enzymes in comparison to the severity of the disease. Methods. Determined were the enzymatic parameters of lymphocytes of 45 patients aged 18 to 42 years with a diagnosis of «influenza». Two groups of patients were formed: with moderate (24 patients) and severe (21 patients) course of the disease. Used as controls were the values the activity of intracellular enzymes of lymphocytes of 37 practically healthy individuals of comparable age. Results. In patients with a moderately severe course of the influenza compared with the controls noted was a significant increase in activity of glucose-6-phosphate dehydrogenase (3.17±0.53 and 2.74±0.31 mkE/10 000 cells, p 0.05) and glycerol-3-phosphate dehydrogenase (57.33±±5.65 and 0.84±0.16 mkE/10 000 cells respectively, p 0.001). The activity of lactate dehydrogenase was lower in patients than in controls (0.40±0.08 and 0.84±0.08 mkE/10 000 cells respectively, p 0.001). Indicators of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate dependant isocitrate dehydrogenases in lymphocytes of patients were lower than in the controls: the first indicator in the patients was 0.17±0.02 mkE/10 000 cells, in controls - 1.95±0.25 mkE/10 000 cells (p 0.001), and for the second indicator these values were respectively 0.09±0.01 and 31.02±±2.20 mkE/10 000 cells (p 0.001). In patients with a moderately severe course of influenza the activity of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate dependant glutamate dehydrogenases was significantly higher compared with healthy individuals: 63.67±5.32 and 0.34±0.06 mkE/10 000 cells, 1.45±0.18 and 0.11±0.02 mkE/10 000 cells respectively (p 0.001). The activity of nicotinamide adenine dinucleotide dependant malate dehydrogenase in patients was equal to 86.46±12.30 mkE/10 000 cells (in the control group 84.16±13.70 mkE/10 000 cells), and the activity of nicotinamide adenine dinucleotide phosphate dependant malate dehydrogenase was equal to 1.34±±0.25 mkE/10 000 cells (in the control group 0.33±0.07 mkE/10 000 cells, p 0.001). The activity of glutathione reductase was also higher in patients with the moderately severe course of the influenza: 5.86±0.25 mkE/10 000 cells, while the value in healthy individuals was 1.28±0.30 mkE/10 000 cells (p 0.001). In the group of patients with a severe course of influenza the activity of almost all (except for glucose-6-phosphate dehydrogenase) enzymes was higher than during the moderately severe course of disease. Conclusion. At the peak of the diseases noted were opposite changes in the activity of reactions of the pentose phosphate cycle and glycolysis. With a high functional load on the cells there is a significant reduction in the intensity of the reactions of the initial phase of the tricarboxylic acid cycle, which reduces the energy efficiency of the cycle, while the intense influx of metabolites to supply the tricarboxylic acid cycle with substrates of the amino acid metabolism provides enhanced transport of amino acids into the lymphocytes.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Vinai Chittezham Thomas ◽  
Lauren C. Kinkead ◽  
Ashley Janssen ◽  
Carolyn R. Schaeffer ◽  
Keith M. Woods ◽  
...  

ABSTRACT A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward β-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from β-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. IMPORTANCE Staphylococcus epidermidis, a normal inhabitant of the human skin microflora, is the most common cause of indwelling medical device infections. In the present study, we analyzed 126 clinical S. epidermidis isolates and discovered that tricarboxylic acid (TCA) cycle dysfunctions are relatively common in the clinical environment. We determined that a dysfunctional TCA cycle enables S. epidermidis to resist oxidative stress and alter its cell surface properties, making it less susceptible to β-lactam antibiotics.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lue Ha ◽  
Mengyun Yu ◽  
Zhiyi Yan ◽  
Zhang Rui ◽  
Baixiao Zhao

Objective. To investigate the antiaging effects of moxibustion and moxa smoke on APP/PS1 mice and to illustrate the mechanism of moxibustion improving Alzheimer’s disease (AD). Methods. 36 male APP/PS1 mice were randomly assigned into three groups (n = 12), including a model control group, a moxibustion group, and a moxa smoke group. In addition, 12 C57BL/6 normal mice served as a normal (negative) control group. Mice in the moxibustion group received moxibustion intervention using Guanyuan (RN4) acupoint. Mice in the moxa smoke group received moxa smoke exposure with the same frequency as the moxibustion group. Behavioral tests were implemented in the 9th week, 3 days after the completion of the intervention. Tricarboxylic acid cycle and fatty acid metabolomics assessments of the mice were determined after behavioral tests. Results. In this study, relative to normal mice, we found that AD mice showed altered tricarboxylic and fatty acid metabolism and showed behavioral changes consistent with the onset of AD. However, both the moxibustion and moxa smoke interventions were able to mitigate these effects to some degree in AD mice. Conclusions. The data suggest that tricarboxylic acid cycle and unsaturated fatty acid metabolomics changes may be a target of AD, and the beneficial effects of moxibustion on cognitive behaviors may be mediated by the energy metabolism system.


2014 ◽  
Vol 10 (1) ◽  
pp. e1003893 ◽  
Author(s):  
Elodie Ramond ◽  
Gael Gesbert ◽  
Mélanie Rigard ◽  
Julien Dairou ◽  
Marion Dupuis ◽  
...  

2017 ◽  
Vol 18 (4) ◽  
pp. 352-353 ◽  
Author(s):  
Tim Hendra ◽  
Jonathan Simon ◽  
Alastair Lowe

We present a case of a woman in her 70 s, on cyclophosphamide for multiple myeloma, who was admitted to critical care with grade III acute kidney injury. Renal replacement therapy with regional citrate anticoagulation was commenced. Shortly thereafter her systemic-ionised calcium levels fell and remained stubbornly low until post-filter calcium return was doubled. Her total-to-ionised calcium ratio gradually increased and so, to avoid further accumulation of citrate, anticoagulation was changed to heparin. Cyclophosphamide, which accumulates in renal failure, is known to interfere with key enzymes involved in the tricarboxylic acid cycle. We postulate that cyclophosphamide interfered with her citrate metabolism, resulting in persistent systemic chelation of calcium.


2006 ◽  
Vol 290 (6) ◽  
pp. E1057-E1067 ◽  
Author(s):  
M. Shamsul Ola ◽  
Deborah A. Berkich ◽  
Yuping Xu ◽  
M. Todd King ◽  
Thomas W. Gardner ◽  
...  

This study was conceived in an effort to understand cause and effect relationships between hyperglycemia and diabetic retinopathy. Numerous studies show that hyperglycemia leads to oxidative stress in the diabetic retinas, but the mechanisms that generate oxidative stress have not been resolved. Increased electron pressure on the mitochondrial electron transfer chain, increased generation of cytosolic NADH, and decreases in cellular NADPH have all been cited as possible sources of reactive oxygen species and nitrous oxide. In the present study, excised retinas from control and diabetic rats were exposed to euglycemic and hyperglycemic conditions. Using a microwave irradiation quenching technique to study retinas of diabetic rats in vivo, glucose, glucose-derived metabolites, and NADH oxidation/reduction status were measured. Studying excised retinas in vitro, glycolytic flux, lactate production, and tricarboxylic acid cycle flux were evaluated. Enzymatically assayed glucose 6-phosphate and fructose 6-phosphate were only slightly elevated by hyperglycemia and/or diabetes, but polyols were increased dramatically. Cytosolic NADH-to-NAD ratios were not elevated by hyperglycemia nor by diabetes in vivo or in vitro. Tricarboxylic acid cycle flux was not increased by the diabetic state nor by hyperglycemia. On the other hand, small increases in glycolytic flux were observed with hyperglycemia, but glycolytic flux was always lower in diabetic compared with control animals. An observed decrease in activity of glyceraldehyde-3-phosphate dehydrogenase may be partially responsible for slow glycolytic flux for retinas of diabetic rats. Therefore, it is concluded that glucose metabolism, downstream of hexokinase, is not elevated by hyperglycemia or diabetes. Metabolites upstream of glucose such as the sorbitol pathway (which decreases NADPH) and polyol synthesis are increased.


2011 ◽  
Vol 300 (4) ◽  
pp. F947-F956 ◽  
Author(s):  
Liangcai Zhao ◽  
Hongchang Gao ◽  
Fulin Lian ◽  
Xia Liu ◽  
Yongxiang Zhao ◽  
...  

Elucidation of the metabolic profiling in diabetic nephropathy (DN) rats is of great assistance for understanding the pathogenesis of DN. In this study, 1H-nuclear magnetic resonance (NMR)-based metabonomics combined with HPLC measurements was used to quantitatively analyze the metabolic changes in urine and kidney extracts from diabetic 2-wk and 8-wk rats induced by streptozotocin (STZ). Pattern recognition analysis of either urine or kidney extracts indicated that the two diabetic groups were separated obviously from the control group, suggesting that the metabolic profiles of the diabetic groups were markedly different from the control. The diabetic 8-wk rats showed lower levels of creatine, dimethylamine, and higher levels of ascorbate, succinate, lactate, citrate, allantoin, 2-ketoglutarate, and 3-hydrobutyrate (3-HB) in the urine samples. Moreover, the diabetic 8-wk rats displayed lower levels of succinate, creatine, myo-inositol, alanine, lactate, and ATP, and higher levels of 3-HB and glucose in the kidney extracts. The observed metabolic changes imply the enhanced pathways of either lipid or ketone body synthesis and decreased pathways of either tricarboxylic acid cycle or glycolysis in DN rats compared with the control. Our results suggest that the energy metabolic changes are associated with the pathogenic process of DN.


Sign in / Sign up

Export Citation Format

Share Document