scholarly journals Long-Term Cryopreservation Does Not Affect Quality of Peripheral Blood Stem Cell Grafts: A Comparative Study of Native, Short-Term and Long-Term Cryopreserved Haematopoietic Stem Cells

2021 ◽  
Vol 30 ◽  
pp. 096368972110360
Author(s):  
Daniel Lysak ◽  
Michaela Brychtová ◽  
Martin Leba ◽  
Miroslava Čedíková ◽  
Daniel Georgiev ◽  
...  

Cryopreserved haematopoietic progenitor cells are used to restore autologous haematopoiesis after high dose chemotherapy. Although the cells are routinely stored for a long period, concerns remain about the maximum storage time and the possible negative effect of storage on their potency. We evaluated the effect of cryopreservation on the quality of peripheral stem cell grafts stored for a short (3 months) and a long (10 years) period and we compared it to native products.The viability of CD34+ cells remained unaffected during storage, the apoptotic cells were represented up to 10% and did not differ between groups. The clonogenic activity measured by ATP production has decreased with the length of storage (ATP/cell 1.28 nM in native vs. 0.63 in long term stored products, P < 0.05). Only borderline changes without statistical significance were detected when examining mitochondrial and aldehyde dehydrogenase metabolic activity and intracellular pH, showing their good preservation during cell storage. Our experience demonstrates that cryostorage has no major negative effect on stem cell quality and potency, and therefore autologous stem cells can be stored safely for an extended period of at least 10 years. On the other hand, long term storage for 10 years and longer may lead to mild reduction of clonogenic capacity. When a sufficient dose of stem cells is infused, these changes will not have a clinical impact. However, in products stored beyond 10 years, especially when a low number of CD34+ cells is available, the quality of stem cell graft should be verified before infusion using the appropriate potency assays.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5637-5637
Author(s):  
Mie Mie Khine ◽  
Hnin Mya Thandar ◽  
Aye Aye Gyi

Although cryopreservation of stem cells is a standard practice for autologous haematopoietic progenitor cells transplantation to treat haematologic malignancies, it has many limitations including toxicities of cryo-protectant, requirement for cryopreservation facilities as well as trained personnel which causes barriers for transplant programs in resource limited countries. To overcome these limitations, a newly established first transplant centre at the North Okkalapa General and Teaching Hospital of Myanmar has been using ordinary refrigerator at 4 degree Celsius to store autologous peripheral blood stem cells collected by apheresis during the interval between collection and transplantation for patients with multiple myeloma who underwent high dose melphalan therapy and autologous stem cell rescue. During early days of the centre, in addition to microbiological testing, to ensure the quality of stem cells, serial measurement for stem cell count and viability were made on daily basis till the day of transplant and continued testing if adequate samples of aliquots were available for analysis. Viable CD34+ cells were analyzed by BD FACS Canto II flow cytometer using BD stem cell enumeration kits that incorporate 7-Amino Actinomycin D viability dyes. The results of the viable CD34+counts of 13 myeloma patients, 5 males and 8 females, median age- 57 years, who underwent autologous peripheral blood stem cell transplantation during early periods of the transplant center from May 2014 to January, 2019, were retrospectively reviewed for the quality of stem cells from the non-cryopreserved methods. Mean CD34 + cells enumerated at the time of reinfusion were 3.45 x 106 cells/kg (range 1.45 - 4.87 x 106 cells/kg). The mean viability of stem cells on day of collection (day 0) were 96.13% (range 83.33% -100%) which was almost unchanged one day after collection (day 1) at 95.93% (85.70% -99.24%). On second and third day after collection, mean viability of the collected cells although fallen below 90% were reasonably preserved at 88.7% (81.74-95.61) on day 2 and 88.08% (87.07-89.09) on day 3, and 85.37% on day 4. Median neutrophil engraftment time was 11 days (range 9-12) and that for platelet engraftment was 16 days (range 9-44). There were no graft failure or mortality during first 100 days. It was encouraging to observe that even at the refrigerator temperature at 4degree Celsius, without any additives or manipulation, stem cell viability could be maintained above 85% minimum of four days with good transplant outcome. Further studies are needed to investigate maximum storage period which could allow reasonable viability and function of the stem cells. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Gee-Hye Kim ◽  
Jihye Kwak ◽  
Sung Hee Kim ◽  
Hee Jung Kim ◽  
Hye Kyung Hong ◽  
...  

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3772-3778 ◽  
Author(s):  
André Larochelle ◽  
Allen Krouse ◽  
Mark Metzger ◽  
Donald Orlic ◽  
Robert E. Donahue ◽  
...  

AMD3100, a bicyclam antagonist of the chemokine receptor CXCR4, has been shown to induce rapid mobilization of CD34+ hematopoietic cells in mice, dogs, and humans, offering an alternative to G-CSF mobilization of peripheral-blood hematopoietic stem cells. In this study, AMD3100-mobilized CD34+ cells were phenotypically analyzed, marked with NeoR-containing retroviral vectors, and subsequently transplanted into myeloablated rhesus macaques. We show engraftment of transduced AMD3100-mobilized CD34+ cells with NeoR gene marked myeloid and lymphoid cells up to 32 months after transplantation, demonstrating the ability of AMD3100 to mobilize true long-term repopulating hematopoietic stem cells. More AMD3100-mobilized CD34+ cells are in the G1 phase of the cell cycle and more cells express CXCR4 and VLA-4 compared with G-CSF-mobilized CD34+ cells. In vivo gene marking levels obtained with AMD3100-mobilized CD34+ cells were better than those obtained using CD34+ cells mobilized with G-CSF alone. Overall, these results indicate that AMD3100 mobilizes a population of hematopoietic stem cells with intrinsic characteristics different from those of hematopoietic stem cells mobilized with G-CSF, suggesting fundamental differences in the mechanism of AMD3100-mediated and G-CSF-mediated hematopoietic stem cell mobilization. Thus, AMD3100-mobilized CD34+ cells represent an alternative source of hematopoietic stem cells for clinical stem cell transplantation and genetic manipulation with integrating retroviral vectors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1828-1828 ◽  
Author(s):  
Christoph Kahl ◽  
Marco Mielcarek ◽  
Mineo Iwata ◽  
Michael Harkey ◽  
Barry Storer ◽  
...  

Abstract Efforts to replace total body irradiation (TBI) used for transplant conditioning with agents that have less acute and long-term toxicities require a better understanding of the biological effects of low dose TBI. We therefore retrospectively analyzed the role of radiation dose, stem cell source, and type of immunosuppression on both the stability and degree of donor chimerism in canine recipients of matched littermate hematopoietic cell transplants. Recipients were prepared with 200 cGy (n=26), 100 cGy (n=76) or 50 cGy (n=19) total body irradiation (TBI) at 7 cGy/min. Stem cell sources included bone marrow (BM) alone (n=58), BM plus G-CSF mobilized peripheral blood mononuclear cells (G-PBMC) (n=42), BM and CD14-depleted G-PBMC (n=13), or BM and T-cell-depleted G-PBMC (n=8). Posttransplant immunosuppression consisted of cyclosporin (CSP) only (n=53), CSP plus mycophenolate mofetil (MMF) (n=23), CSP and rapamycin (n=12), CSP, MMF and rapamycin (n=5); or CSP and MMF in combination with pretransplant immunosuppression (n=28). The percentage of donor granulocytes in the peripheral blood, as determined by PCR amplification of variable numbers of tandem repeats (VNTR), served as a marker for engraftment. TBI dose and stem cell source were both significantly associated with long-term (>26 weeks) stable engraftment in multivariate analysis (p=0.0001 and p=0.004, respectively). Among the 39 dogs with stable engraftment, however, TBI dose was the only factor examined that was associated with the degree of donor chimerism (mean % of donor granulocytes after 200 cGy, 100 cGy and 50 cGy of TBI: 65%, 52%, and 24%, respectively; p=0.008). To determine whether low-dose irradiation directly affected recipient stem/progenitor cell numbers and thereby conferred a competitive disadvantage to donor cells, CD34+ cells were isolated from two normal human donors. One preparation of CD34 cells was ex vivo irradiated (=200 cGy) and then injected into NOD/SCID beta2m-/- mice in combination with an equal number of unirradiated CD34 cells from the second donor. The contributions of each donor to human engraftment were assessed at 10 weeks by VNTR. After 200 cGy, the irradiated population contributed 74% less than expected, 24% less after 100 cGy, but only 6% less after 50 cGy. Flow analysis of Caspase-3 activation indicated that a significant percentage of cells irradiated with 200 cGy were apoptotic, and that this was associated with the loss of L-selectin and P-selectin glycoprotein ligand-1. In conclusion, our findings suggest that TBI, in addition to its well-characterized immunosuppressive effects, determines the degree of donor cell engraftment by directly compromising recipient stem cells, thereby providing a competitive advantage to donor stem cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2868-2868 ◽  
Author(s):  
Ingmar Bruns ◽  
Ulrich Steidl ◽  
Christof Scheid ◽  
Kai Hübel ◽  
Roland Fenk ◽  
...  

Abstract To date the most effective treatment for patients (pts) with multiple myeloma consists of conventional induction chemotherapy followed by either single or tandem high-dose chemotherapy and autologous blood stem cell transplantation. Collection of sufficient numbers of hematopoietic stem cells is essential for high-dose chemotherapy. Current regimens for stem cell mobilization are based on daily subcutaneous injections of human recombinant G-CSF starting shortly after cytotoxic therapy. Here we examined the use of polyethyenglycole (PEG)-conjugated G-CSF (pegfilgrastim) at two different doses in patients with stage II or III multiple myeloma. Patients received induction therapy with 2–4 cycles ID or VAD. Following cytotoxic therapy with cyclophosphamide (4g/m2) we administered either a single dose of 6 mg pegfilgrastim (n=10 pts; median age: 55 years), 12 mg pegfilgrastim (n=12 pts; median age: 51 years) or daily doses of 8,5 μg/kg unconjugated G-CSF (filgrastim) (n=12 pts; median age: 51 years). The growth factor was given on day 4 (range 2–5 days) in the “6 mg pegfilgrastim group”, on day 5 (range 2–7 days) in the “12 mg pegfilgrastim group” and on day 4 (range 3–6 days) in the “filgrastim group” after cyclophosphamide. Numbers of CD34+ cells were determined during leukocyte recovery and harvested by large volume apheresis using a cobe spectra blood cell separator. Pegfilgratim was associated with an earlier leukocyte recovery both at the 6mg dose (median 12 days, range 8–16 days) and the 12mg dose (median 12 days, range 7–16 days) as compared to filgrastim (median 14 days, range 11–15 days, p=0.04). Similarily, the peripheral blood CD34+ cell peak occurred earlier in patients who received pegfilgrastim (median 12 days, range 11–18 days versus median 15 days, range 12–18). On the other hand the peripheral blood CD 34+ peak did not differ significantly between the three groups (median 129/μl with 6 mg pegfilgrastim, range 30–433, median 78/μl with 12 mg pegfilgrastim, range 20– 1055 and median 111/μl with filgrastim, range 28–760, p=0.95). With a median of 1.0x10E7 CD34+ cells per kg (range 5.8x10E6-1.9x10E7) in the “6 mg pegfilgrastim group”, 7.4x10E6 CD34+ cells per kg (median, range 4.9x10E6- 3.8x10E7) in the “12 mg pegfilgrastim group” and 10.8x10E6 CD34+ cells per kg (median, range 5.0x10E6-8.7x10E7) in the “filgrastim group” there were no significant differences in the total number of harvested CD34+ cells. Following high-dose therapy with melphalan (200 mg/m2) and autografting leukocyte and platelet reconstitution was similar within all groups. In summary, a single dose of pegfilgrastim after high dose cyclophosphamide is capable of mobilizing a sufficient number of CD 34+ cells for succesful autografting and sustained hematological reconstitution in patients with multiple myeloma. No difference could be observed between 6 mg and 12 mg of pegfilgrastim. Our data provide the basis for randomized studies evaluating the optimal dose and timing of pegfilgrastim as well as long-term outcome in larger cohorts of patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1345-1345
Author(s):  
Dan Ran ◽  
Mario Schubert ◽  
Larissa Pietsch ◽  
Isabel Taubert ◽  
Christian Wallenwein ◽  
...  

Abstract INTRODUCTION: Normal hematopoietic stem cells (HSC) are characterized by their ability to self-renew, to generate multiple cell-lineages, and show slow divisional kinetics. Leukemic stem cells (LSC) have been reported to show similar characteristics but their identification has been elusive. We have studied various methods and have identified aldehyde dehydrogenase (ALDH) staining as an optimal method for the enrichment of primary human LSC. MATERIAL&METHODS: Bone marrow samples were obtained from patients with newly diagnosed AML after informed consent. Mononuclear cells were stained with Aldefluor and sorted by flow cytometry according to their forward/side scatter characteristics and ALDH activity (ALDH+/ALDH−). Alternatively, primary AML samples were being enriched for CD34+ cells by magnetic column, then double-stained with CD34-antibodies and Aldefluor and sorted for the co-expression of CD34+ and ALDH+, respectively for CD34+ alone. Human Mesenchymal Stromal Cells (MSC), isolated from human bone marrow, were used as a surrogate model for the cellular microenvironment of the hematopoietic niche. Adhesion of various AML cell lines and subpopulations of primary leukemic cells (ALDH+, ALDH−, CD34+, CD34+/ALDH+, all blasts) to MSC was tested in the adhesion chamber assay. Semi-quantitative RT-PCR was used to analyze the gene expression of various adhesion molecules and Western- Blot analysis was performed to validate the PCR-results on protein level. The generation of secondary leukemic colonies was evaluated in a semi-solid methylcellulose medium, as well as in a long term co-culture system (LSC-IC assay; in analogy to the LTC-IC assay). RESULTS: The percentage of ALDH+ cells ranged from 0.01% to 13.2% with a median of 1.47% (n=55). Adhesion significantly differed in the ALDH+ and ALDH− subpopulations: 85±4% of ALDH+ cells but only 61±8% of ALDH− cells were adherent (n=11, p&lt;0.001). Adhesion molecules, such as CXCR4 and CD44, were highly expressed on the ALDH+ subpopulation both on mRNA level and protein level, in contrast to the ALDH− subpopulation. Analysis of the initial divisional kinetics on single cell base showed that the ALDH+ subpopulation contained more slow dividing cells whereas the majority of the ALDH− subpopulation consisted of fast-dividing cells (n=3; p&lt;0.01). The frequency of long term leukemic colony initiating cells (LSC-IC) was 3.82% in the ALDH+ but only 0.01% in the ALDH− (n=21; p&lt;0.01). In the CD34+ the LSC-IC frequency was 1.96% versus 0.01% in the CD34− (n=5, p&lt;0.01). The highest LSC-IC frequency could be monitored in ALDH+/CD34+ cells: 6.1% generated secondary leukemic colonies (n=5). These colonies, harvested after 7 weeks of cultivation, were examined for their immune phenotype and screened for cytogenetic aberrations by fluorescent in situ hybridization (FISH) and the chromosomal aberrations were consistent with the AML samples taken at diagnosis. Furthermore, the frequency of ALDH+ cells correlated significantly with adverse prognostic factors: patients with a high-risk karyotype had a mean of 2.9% ALDH+ cells (n=21); in contrast, patients with a normal karyotype had a mean of 0.4% ALDH+ cells in their bone marrow (n=34; p&lt;0.001). The ability of ALDH+ versus ALDH− subsets to generate secondary leukemia in the animal model is concurrently examined. DISCUSSION: In summary, measurement of the ALDH activity provides a useful tool for the isolation of a distinct AML-blast subpopulation with stem-cell like features (LSC). The ALDH+ subsets showed higher affinity to the surrogate niche (MSC), elevated expression of CD44, Cadherin-2, and CXCR4 and were associated with an increased frequency of secondary leukemic colonies in vitro (LSC-IC). Above all, the frequency of ALDH+ blasts correlated with clinical prognostic factors, which substanciates LSC as a relevant therapeutic target.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 502-502 ◽  
Author(s):  
Noel-Jean Milpied ◽  
Gerald Marit ◽  
Bernard Dazey ◽  
Jean-Michel Boiron ◽  
Zoran Ivanovic ◽  
...  

Abstract Abstract 502 Autologous stem cell transplantation with PBSC after high-dose chemotherapy remains standard therapy for patients with symptomatic Multiple Myeloma (MM). Strategies to minimize complications could significantly reduce the morbidity of that procedure. One possibility could be to shorten the duration of induced neutropenia through the injection of an ex-vivo expanded graft. Nineteen patients (pts) received EVEC after high-dose Melphalan (HDM) (200 mg/m2) as the only graft. The ex-vivo expanded procedure has been described elsewhere (Boiron et al. Transfusion 2006 and Ivanovic et al. Transfusion 2006). Briefly, thawed peripheral blood CD 34+ cells collected after G-CSF mobilisation and selected with immunomagnetic devices were incubated for 10 days in a serum free medium (Maco Biotech HP01) with Stem Cell Factor (Amgen), G-CSF (Amgen) and TPO (Amgen: 7 pts; Cellgenix:12 pts). The expanded cells were then thoroughly washed and injected 48h after the HDM injection. The ex-vivo expansion lead to a median fold of 5,4 for CD34+ cells (1,3-11,8); 118 for CD33+ (1-703880); 3386 for CD14+ (4-101075); 28,5 for CD13+ (10-703880) and 13 for CFUs (6-21). The median N° of CD34+ cells injected was 14×10e6/kg (5,3-48). The results of these transplants were compared to those achieved in 38 pts who received unmanipulated PBSC after HDM. Pts and controls were matched for age, sex, stage of the disease, first line chemotherapy ( VAD or VD) status of the disease at time of transplant, year of transplant, time between diagnosis and transplant, CD34+ mobilisation technique (HD cytoxan + G-CSF or G-CSF alone) and the median N° of total nucleated cells and of CD34+ collected. The results are summarized on the table: There was no secondary neutropenia in the patients who received EVEC. With a median FU of the entire cohort of 30 m, the median OS for pts who received their first transplant with EVEC and with PBSC is 69 m and not reached respectively (p=NS), the median PFS is 18 m and 27 m (p = NS) and the median time to progression is 14 m and 15 m (p=NS). Conclusion: EVEC is feasible, safe and reduce significantly the morbidity of autologous stem cell transplantation after HDM for multiple myeloma. Disclosures: Milpied: Amgen France: Honoraria.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2258-2258
Author(s):  
Tomer M Mark ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
Morton Coleman ◽  
David Bernstein ◽  
...  

Abstract Abstract 2258 Background: Prior use of lenalidomide beyond 6 cycles of therapy in the treatment of multiple myeloma (MM) has been shown to negatively impact stem cell yield, but this phenomenon can be overcome with the addition of high-dose cyclophosphamide to standard G-CSF mobilization. We hypothesized that the use of plerixafor (Mozobil®) would compare similarly to chemotherapy in rescuing the ability to collect stem cells in lenalidomide-treated myeloma. Methods: We performed a retrospective study comparing the efficacy of plerixafor + G-CSF mobilization (PG) to chemotherapy + G-CSF (CG) (either high-dose cyclophosphamide at 3g/m2 or DCEP [4-day infusional dexamethasone/ cyclophosphamide/ etoposide/cisplatin]) in 49 consecutive stem cell collection attempts in patients with MM exposed to prior lenalidomide. The primary endpoint was the ability to collect sufficient stem cells for at least two transplants (minimum 5×106 CD34+ cells/kg), comparing results in terms of total exposure to lenalidomide and time elapsed from lenalidomide exposure until the mobilization attempt. The secondary endpoint was number of apheresis days required to meet collection goal. Resilts: Twenty-four patients underwent PG mobilization and twenty-five with CG (21 with G-CSF + cyclophosphamide, 4 with G-CSF+DCEP). The two groups did not differ in terms of total amount of lenalidomide exposure: median number of lenalidomide cycles for patients mobilized with PG was 6.5 (range 1.2–86.6), vs. 6 (range 2–21.6), for patients mobilized with CG (P = 0.663). The median time between mobilization and last lenalidomide dose was also similar between the two groups: 57.5 (range 12–462) days for PG vs. 154 (range 27–805) days for CG (P = 0.101). There was an equivalent rate of successful collection of 100% for PG and 96% for CG, P = 0.322. One patient failed collection in the CG group due to emergent hospitalization for septic shock during a period of neutropenia; no patient collected with PG had a serious adverse event that interrupted the collection process. Stem cell yield did not differ between the two arms (13.9 vs. 18.8 × 106 million CD34+ cells/kg for PG vs. CG respectively, P = 0.083). Average time to collection goal was also equal, with a median of time of 1 day required in both groups, (range 1–2 days for PG, 1–5 days for CG, P = 0.073). There was no relationship between amount of lenalidomide exposure and stem cell yield with either PG (P = 0.243) or CG (P = 0.867). Conclusion: A plerixafor + G-CSF mobilization schedule is equivalent in efficacy to chemotherapy + G-CSF in obtaining adequate numbers of stem cells for two autologous stem cell transplants in patients with MM exposed to lenalidomide; however, PG may be a less toxic approach than chemomobilization. Number of lenalidomide cycles has no impact on chances of stem cell collection success using either method. Disclosures: Mark: Celgene Corp: Speakers Bureau; Millenium Corp: Speakers Bureau. Zafar: Celgene Corp: Speakers Bureau. Niesvizky: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4390-4390 ◽  
Author(s):  
Abhinav Deol ◽  
Judith Abrams ◽  
Ashiq Masood ◽  
Zaid Al-Kadhimi ◽  
Muneer H. Abidi ◽  
...  

Abstract Abstract 4390 Background: Plerixafor is a CXCR 4 antagonist which is now approved for use for stem cell (SC) mobilization with granulocyte colony stimulating factor (GCSF) in patients with non Hodgkin lymphoma (NHL) or multiple myeloma (MM). Prior to the approval of plerixafor, we enrolled 49 patients in a compassionate use protocol at our institution to mobilize SC for patients who previously failed at least one mobilization attempt. Methods: Patients received 0.24 mg/kg of plerixafor subcutaneously 9 –11 hrs prior to apheresis in addition to twice daily GCSF. Results: Median age of the patients was 64 years (range, 23–74 years). NHL was the most common diagnosis in 27 (55%) patients, followed by MM with 17(35%) patients and HD with 5 (10%) patients. Thirty nine patients (80%) had been treated with more than 2 chemotherapeutic regimens prior to the first attempt at stem cell collection. Thirty seven patients (76%) failed one previous mobilization attempt, while 12 (24%) had failed 2 or more previous attempts. Using the combination of Plerixafor and GCSF we collected ≥ 2.5 × 106 CD34+ cells/Kg in 33 patients (67%). The median days for pheresis were 1 day with a range of 1 to 3 days. The median SC dose collected was 4 × 106 CD34+ cells/Kg, with a range 2.5 – 14.3. The median CD-34+ peripheral blood count on the 1st day of their collection with plerixafor was 22.4/uL. In contrast the median peripheral blood CD-34+ cell count in these patients on the day of their first collection which failed was 6.2 /uL. The median increase using G-CSF and plerixafor was 14.9 CD-34+ cells/uL. We collected ≥ 2.5 × 106 CD34+ cells/Kg on 4/5 (80%) patients with HD, 13/17 (76%) patients with MM and 16/27 (59%) patients with NHL. Sixteen patients (33%) collected < 2.5 × 106 CD34+ cells/Kg. The median cell dose collected in these patients was 1.4 × 106 CD34+ cells/Kg with a range, 0.4–2.2. The median number of days of pheresis was 2 days (range, 1–4 days). In these16 patients the median CD-34+ count on the day of their previous failed collection was11.2/uL. Their CD-34+ cell count on their first day of collection after the use of G-CSF and plerixafor was 8.3/ul. Figure 1 shows the change in peripheral CD34 counts with the prior mobilization attempt and after plerixafor mobilization, for 38 patients in whom data was available. The most common side effects attributed to plerixafor were diarrhea, fatigue, thrombocytopenia and bone pain; observed in 12%, 8%, 8% and 6% patients, respectively. Forty three of the 49 patients proceeded to an autologus peripheral blood SC transplant, 34 patients received ≥ 2.5 × 106 CD34+ cells/Kg. Thirty two of these patients used the plerixafor collection as the only source of SC. Two patients had their plerixafor mobilized SC combined with a previous suboptimal SC collection. Nine patients received < 2.5 × 106 CD34 + cells/Kg; 4 patients received plerixafor mobilized SC alone, 5 patients received plerixafor mobilized SC combined with their previously mobilized SC. The preparative regimens used were R- BEAM (20 patients), Melphalan (16 patients), BEAM (6 patients) and Etoposide+TBI (1 patient). All patients received GCSF from day +6 till WBC engraftment. The median days of WBC and platelet engraftment were day +11 (range, 9–13 days) and day +16 (range, 11–77 days), respectively. There was no significant difference in days to engraftment between the patients who collected greater or less than 2.5 × 106 CD34 + cells/Kg. With a median follow up 13.7 months, long term engraftment data is available on 27 patients. The median white cell count, hemoglobin and platelet count 1 year after transplant was 4.7 × 109/L, 12.2 g/dL and 109 ×109/L, respectively. There was no significant difference in counts at the 1 year mark between patients who collected more or less than 2.5 × 106 CD34 + cells/Kg. To date 15 patients have evidence of disease progression. Two patients have developed MDS/AML post transplant. Conclusion: Overall, plerixafor leads to mobilization of sufficient stem cells in a vast majority of patients who have failed previous mobilization attempts and allows more patients to proceed to an autologous SC transplant. Plerixafor is well tolerated with minimal side effects, acceptable time to engraftment and acceptable peripheral blood counts at 1 yr after the transplant. Our analysis suggests that failure to increase peripheral CD34 count after plerixafor when compared to previous attempts may predict unsuccessful mobilization. Disclosures: Lum: Transtarget Inc: Equity Ownership, Founder of Transtarget.


Sign in / Sign up

Export Citation Format

Share Document