Tracer Technique to Measure in Vivo Chemical Transport Rates within an Implantable Cell Transplantation Device

1995 ◽  
Vol 4 (2) ◽  
pp. 201-217 ◽  
Author(s):  
Jeffrey G. Sarver ◽  
Ronald L. Fournier ◽  
Peter J. Goldblatt ◽  
Tamara L. Phares ◽  
Sara E. Mertz ◽  
...  

An in vivo tracer technique that uses radiolabeled inulin as the tracer molecule has been developed to assess the rate of chemical transport between the cell transplantation chamber of an implantable bioartificial device and the host's circulatory system. The device considered here employs site-directed neovascularization of a porous matrix to induce capillary growth adjacent to an immunoisolated cell implantation chamber. This device design is being investigated as a vehicle for therapeutic cell transplantation, with the advantages that it allows the cells to perform their therapeutic function without the danger of immune rejection and it avoids damaging contact of blood flow with artificial surfaces. A pharmacokinetic model of the mass transport between the implantation chamber, the vascularized matrix, and the body has been devised to allow proper analysis and understanding of the experimental tracer results. Experiments performed in this study have been principally directed at evaluation of the tracer model parameters, but results also provide a quantitative measure of the progression of capillary growth into a porous matrix. Measured plasma tracer levels demonstrate that chemical transport rates within the implanted device increase with the progression of matrix vascular ingrowth. Agreement between the fitted model curves and the corresponding measured concentrations at different levels of capillary ingrowth demonstrate that the model provides a realistic representation of the actual capillary-mediated transport phenomena occurring within the device.

2020 ◽  
Vol 29 ◽  
pp. 096368972097636
Author(s):  
Daisuke Kami ◽  
Masashi Yamanami ◽  
Takahiro Tsukimura ◽  
Hideki Maeda ◽  
Tadayasu Togawa ◽  
...  

Fabry disease is caused by a decrease in or loss of the activity of alpha-galactosidase, which causes its substrates globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) to accumulate in cells throughout the body. This accumulation results in progressive kidney injury due to glomerulosclerosis and in heart failure due to hypertrophy. Enzyme replacement therapy (ERT) has been used as the standard therapy for Fabry disease, but it causes a significant financial burden, and regular administration is inconvenient for patients. Because of the short half-life of alpha-galactosidase in vivo, therapeutic methods that can supplement or replace ERT are expected to involve continuous release of alpha-galactosidase, even at low doses. Cell transplantation therapy is one of these methods; however, its use has been hindered by the short-term survival of transplanted cells. CellSaic technology, which utilizes cell spheroids that form after cells are seeded simultaneously with a recombinant collagen peptide scaffold called a μ-piece, has been used to improve cell survival upon implantation. In this study, syngeneic murine embryonic fibroblasts were used to generate CellSaic that were transplanted into Fabry mice. These spheroids survived for 28 days in the renal subcapsular space with forming blood vessels. These results indicate CellSaic technology could be a platform to promote cellular graft survival and may facilitate the development of cell transplantation methods for lysosomal diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Emma Jussing ◽  
Li Lu ◽  
Jonas Grafström ◽  
Tetyana Tegnebratt ◽  
Fabian Arnberg ◽  
...  

Abstract Background Albumin is commonly used as a carrier platform for drugs to extend their circulatory half-lives and influence their uptake into tissues that have altered permeability to the plasma protein. The albumin-binding domain (ABD) protein, which binds in vivo to serum albumin with high affinity, has proven to be a versatile scaffold for engineering biopharmaceuticals with a range of binding capabilities. In this study, the ABD protein equipped with a mal-DOTA chelator (denoted ABY-028) was radiolabeled with gallium-68 (68Ga). This novel radiotracer was then used together with positron emission tomography (PET) imaging to examine variations in the uptake of the ABD-albumin conjugate with variations in endothelial permeability. Results ABY-028, produced by peptide synthesis in excellent purity and stored at − 20 °C, was stable for 24 months (end of study). [68Ga]ABY-028 could be obtained with labeling yields of > 80% and approximately 95% radiochemical purity. [68Ga]ABY-028 distributed in vivo with the plasma pool, with highest radioactivity in the heart ventricles and major vessels of the body, a gradual transport over time from the circulatory system into tissues and elimination via the kidneys. Early [68Ga]ABY-028 uptake differed in xenografts with different vascular properties: mean standard uptake values (SUVmean) were initially 5 times larger in FaDu than in A431 xenografts, but the difference decreased to 3 after 1 h. Cutaneously administered, vasoactive nitroglycerin increased radioactivity in the A431 xenografts. Heterogeneity in the levels and rates of increases of radioactivity uptake was observed in sub-regions of individual MMTV-PyMT mammary tumors and in FaDu xenografts. Higher uptake early after tracer administration could be observed in lower metabolic regions. Fluctuations in the increased permeability for the tracer across the blood-brain-barrier (BBB) direct after experimentally induced stroke were monitored by PET and the increased uptake was confirmed by ex vivo phosphorimaging. Conclusions [68Ga]ABY-028 is a promising new tracer for visualization of changes in albumin uptake due to disease- and pharmacologically altered vascular permeability and their potential effects on the passive uptake of targeting therapeutics based on the ABD protein technology.


2021 ◽  
Vol 15 ◽  
Author(s):  
Monika Jankowska-Kieltyka ◽  
Adam Roman ◽  
Irena Nalepa

Air pollution is regarded as an important risk factor for many diseases that affect a large proportion of the human population. To date, accumulating reports have noted that particulate matter (PM) is closely associated with the course of cardiopulmonary disorders. As the incidence of Alzheimer’s disease (AD), Parkinson’s disease (PD), and autoimmune disorders have risen and as the world’s population is aging, there is an increasing interest in environmental health hazards, mainly air pollution, which has been slightly overlooked as one of many plausible detrimental stimuli contributing to neurodegenerative disease onset and progression. Epidemiological studies have indicated a noticeable association between exposure to PM and neurotoxicity, which has been gradually confirmed by in vivo and in vitro studies. After entering the body directly through the olfactory epithelium or indirectly by passing through the respiratory system into the circulatory system, air pollutants are subsequently able to reach the brain. Among the potential mechanisms underlying particle-induced detrimental effects in the periphery and the central nervous system (CNS), increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein homeostasis, and ultimately, neuronal death are often postulated and concomitantly coincide with the main pathomechanisms of neurodegenerative processes. Other complementary mechanisms by which PM could mediate neurotoxicity and contribute to neurodegeneration remain unconfirmed. Furthermore, the question of how strong and proven air pollutants are as substantial adverse factors for neurodegenerative disease etiologies remains unsolved. This review highlights research advances regarding the issue of PM with an emphasis on neurodegeneration markers, symptoms, and mechanisms by which air pollutants could mediate damage in the CNS. Poor air quality and insufficient knowledge regarding its toxicity justify conducting scientific investigations to understand the biological impact of PM in the context of various types of neurodegeneration.


2020 ◽  
Author(s):  
Prashant Dogra ◽  
Javier Ruiz-Ramírez ◽  
Kavya Sinha ◽  
Joseph D. Butner ◽  
Maria J Peláez ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogen of immense public health concern. Efforts to control the disease have only proven mildly successful, and the disease will likely continue to cause excessive fatalities until effective preventative measures (such as a vaccine) are developed. To develop disease management strategies, a better understanding of SARS-CoV-2 pathogenesis and population susceptibility to infection are needed. To this end, physiologically-relevant mathematical modeling can provide a robust in silico tool to understand COVID-19 pathophysiology and the in vivo dynamics of SARS-CoV-2. Guided by ACE2-tropism (ACE2 receptor dependency for infection) of the virus, and by incorporating cellular-scale viral dynamics and innate and adaptive immune responses, we have developed a multiscale mechanistic model for simulating the time-dependent evolution of viral load distribution in susceptible organs of the body (respiratory tract, gut, liver, spleen, heart, kidneys, and brain). Following calibration with in vivo and clinical data, we used the model to simulate viral load progression in a virtual patient with varying degrees of compromised immune status. Further, we conducted global sensitivity analysis of model parameters and ranked them for their significance in governing clearance of viral load to understand the effects of physiological factors and underlying conditions on viral load dynamics. Antiviral drug therapy, interferon therapy, and their combination was simulated to study the effects on viral load kinetics of SARS-CoV-2. The model revealed the dominant role of innate immunity (specifically interferons and resident macrophages) in controlling viral load, and the impotance of timing when initiating therapy following infection.Graphical Abstract


1993 ◽  
Vol 15 (2) ◽  
pp. 73-88 ◽  
Author(s):  
I. Céspedes ◽  
J. Ophir ◽  
H. Ponnekanti ◽  
N. Maklad

Changes in tissue elasticity are generally correlated with its pathological state. In many cases, despite the difference in elasticity, the small size of a lesion or its location deep in the body preclude its detection by palpation. In general, such a lesion may or may not posses echogenic properties that would make it ultrasonically detectable. Elastography is an ultrasonic method for imaging the elasticity of compliant tissues. The method estimates the local longitudinal strain of tissue elements by ultrasonically assessing the one dimensional local displacements. This information can be combined with first order theoretical estimates of the local stress to yield a quantitative measure of the local elastic properties of tissue. The elasticity information is displayed in the form of a gray scale image called an elastogram. An experimental system for elastography in phantoms based on a single element transducer has been described previously [1]. Here we introduce a new elastography system based on a linear array transducer that is suitable for in vivo scanning. We describe tissue mimicking phantom experiments and preliminary in vivo breast and muscle elastograms confirming the feasibility of performing elastography in vivo. An elastogram of a breast containing an 8 mm palpable cancer nodule clearly shows the lesion. Elastograms and their corresponding sonograms show some similarities and differences in the depiction of tissue structures.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


2020 ◽  
Author(s):  
Johannes Karges ◽  
Shi Kuang ◽  
Federica Maschietto ◽  
Olivier Blacque ◽  
Ilaria Ciofini ◽  
...  

<div>The use of photodynamic therapy (PDT) against cancer has received increasing attention overthe recent years. However, the application of the currently approved photosensitizers (PSs) is somehow limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E’)-4,4´-bisstyryl 2,2´-bipyridine ligands showed impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While non-toxic in the dark, these compounds were found phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and be able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2 Photon excitation.</div>


Author(s):  
Pavani C H

Hyperlipidemia is the immediate results of the excessive fat intake in food. This results in the elevated levels of cholesterol and triglycerides in the blood. This leads to heart conditions like CAD, hypertension, congestive heart failure as risk factors which can be lethal. There are many drugs to treat and control the lipids levels in the body. These drugs are either designed to prevent LDL accumulation and VLDL synthesis. Some drugs also lower the elevated levels of saturated lipids in the body. But many drugs are known to cause side effects and adverse effects; therefore, alternatives to the drugs are the subjects for current investigations. Herbs and medicinal plants are used as treatment sources for many years. They have been used in the Indian medical systems like Ayurveda, Siddha etc. As the application of herbs in the treatment is growing, there is an urgent need for the establishment of Pharmacological reasoning and standardization of the activity of the medicinal plants. Chloris paraguaiensis Steud. is Poyaceae member that is called locally as Uppugaddi. Traditionally it is used to treat Rheumatism, Diabetes, fever and diarrhoea. The chemical constituents are known to have anti-oxidant properties and most of the anti-oxidants have anti-hyperlipidemic activity too. Since the plant has abundant flavonoid and phenol content, the current research focusses on the investigation of the anti-hyperlipidemic activity of the plant Chloris extracts. Extracts of Chloris at 200mg/kg showed a comparably similar anti hyperlipidemia activity to that of the standard drug. The extracts showed a dose based increase in the activity at 100 and 200mg/kg body weight.


Sign in / Sign up

Export Citation Format

Share Document