Electrospun polyethersulfone/Ag-Clinoptilolite to remove chemical oxygen demand from real wastewater

2021 ◽  
pp. 096739112110601
Author(s):  
Mojgan Zendehdel ◽  
Faezeh Hossein Nouri

Ag-Clinoptilolite/Polyethersulfone (PES/Clin/AgNPs) nanofiber was synthesized through the electrospinning method. The effect of solvent, the amount of Ag-Clinoptilolite, and PES were investigated. Parameters such as electric field, spinning distance, and concentration of the dope solution were studied in order to demonstrate their effects on the electrospinning ability and morphology of the nanofiber. The structure of PES/Clin/AgNPs nanofiber was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analyses. In the optimum conditions, the nanofibers could be prepared at the size of 250–800 nm. Then, their ability to remove chemical oxygen demand (COD) from real wastewater was studied. The result revealed about 85% removal of COD at pH = 10 and in 10 min for PES/Clin/AgNPs (25%). A successful fabrication method using low-cost natural zeolite and the green polymer was introduced. The reusability of the column was assessed.

2012 ◽  
Vol 9 (2) ◽  
pp. 705-715 ◽  
Author(s):  
Ashok V. Borhade ◽  
Dipak R. Tope ◽  
Bhagwat K. Uphade

We report here the synthesis of visible light sensitive PbO and Ni doped PbO nanoparticles by hydrothermal method and characterized by UV-DRS, photoluminescence spectroscopy (PL), FTIR, X-ray diffraction (XRD), SEM, EDAX and TGA. Further an efficient approach has been developed for degradation of methyl blue (MB) in aqueous medium. The photodegradation of dye was monitored as a function of dye concentration, pH and catalyst amount has been determined. The reduction in the chemical oxygen demand (COD) revealed the mineralization of dye along with colour removal.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2006 ◽  
Vol 39 (4) ◽  
pp. 626-629
Author(s):  
M. Jayaprakasan ◽  
V. Kannan ◽  
P. Ramasamy

X-ray powder diffraction is an established method for the qualitative identification of crystalline materials and their quantitative analysis. The new generation of X-ray diffraction systems are based on expensive digital/embedded control technology and computer interfaces. Yet many laboratories use conventional manual-controlled systems withXYstrip-chart recorders. Since the output spectrum is a strip chart (hard copy), raw data, essential for structural and qualitative analysis, are not readily available for further analysis. Upgrading to modern computerized diffractometers is very expensive. The proposed automation design described here is intended to enable the conventional diffractometer user to collect, store and analyze data quickly. The design also improves the resolution by five times compared with the conventional setup. For the automation, a PC add-on card has been designed to control and collect the timing and intensity counts from the conventional X-ray diffractometer, and suitable software has been developed to collect, process and present the X-ray diffraction data for both qualitative and quantitative analysis. Moreover, a major advantage of this design is that it does not warrant any physical modification of the hardware of the conventional setup; it is simply an extension to enhance the performance of collecting raw data with a higher resolution at desired intervals/timings.


Author(s):  
Nesrine Jaouabi ◽  
Wala Medfai ◽  
Marouan Khalifa ◽  
Rabia Zaghouani ◽  
Hatem Ezzaouia

The titanium dioxide (TiO2) purity is very important for the TiO2-based applications making essential the impurities density reduction. In this study, we propose an efficient purification process of TiO2 powder in order to reduce impurities. The low-cost proposed approach is based on an iterative gettering (IG) process combining three main steps: (1) a porous TiO2 sacrificial layer formation (p-TiO2), (2) a rapid thermal annealing (RTA) of p-TiO2 powder in an infrared oven at 950°C under air permitting the residual impurities diffusion to the porous layer surface and (3) etching in acid solution to remove the porous layer. Effect of the proposed gettering process on purification efficiency was evaluated by different characterization techniques such as the transmission electron microscopy (TEM), the energy dispersive x-ray spectroscopy (EDX), the UV–Visible-NIR spectroscopy, the X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS). The obtained results showed the efficient removal of metal impurities, such as Cu, Al, P, and Fe confirming the efficiency of the process improving the purity from 89% to 99.96%.


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 63
Author(s):  
Khalil Ibrahim ◽  
Mohammad Moumani ◽  
Salsabeela Mohammad

A combined process is proposed for the utilization of local kaolin to produce alumina particles. The applied process is made in two stages: calcination at 700 °C with sodium chloride and leaching with sulfuric followed by hydrochloric acids. The optimal extraction efficiency can be obtained when the conditions are as follows: leaching temperature is at 140 °C, leaching time is 3 h 45 min and concentration of sulfuric acid is 40 wt.%. The results show that the purity of alumina reaches 79.28%, which is suitable for the production of aluminum metal. It is evident that this method of extraction of alumina from the kaolin ash is practical and feasible. The structural and morphological properties of the calcined microcrystalline powder was characterized by X-ray diffraction and scanning electron microscope (SEM).


Author(s):  
S. Louki ◽  
N. Touach ◽  
A. Benzaouak ◽  
V. M. Ortiz-Martínez ◽  
M. J. Salar-García ◽  
...  

This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.


2021 ◽  
Author(s):  
Airidas Korolkovas ◽  
Alexander Katsevich ◽  
Michael Frenkel ◽  
William Thompson ◽  
Edward Morton

X-ray computed tomography (CT) can provide 3D images of density, and possibly the atomic number, for large objects like passenger luggage. This information, while generally very useful, is often insufficient to identify threats like explosives and narcotics, which can have a similar average composition as benign everyday materials such as plastics, glass, light metals, etc. A much more specific material signature can be measured with X-ray diffraction (XRD). Unfortunately, XRD signal is very faint compared to the transmitted one, and also challenging to reconstruct for objects larger than a small laboratory sample. In this article we analyze a novel low-cost scanner design which captures CT and XRD signals simultaneously, and uses the least possible collimation to maximize the flux. To simulate a realistic instrument, we derive a formula for the resolution of any diffraction pathway, taking into account the polychromatic spectrum, and the finite size of the source, detector, and each voxel. We then show how to reconstruct XRD patterns from a large phantom with multiple diffracting objects. Our approach includes a reasonable amount of photon counting noise (Poisson statistics), as well as measurement bias, in particular incoherent Compton scattering. The resolution of our reconstruction is sufficient to provide significantly more information than standard CT, thus increasing the accuracy of threat detection. Our theoretical model is implemented in GPU (Graphics Processing Unit) accelerated software which can be used to assess and further optimize scanner designs for specific applications in security, healthcare, and manufacturing quality control.


2021 ◽  
Author(s):  
Wenjing Jiang ◽  
Zhenlin Jiang ◽  
Xin Fan ◽  
Min Zhu

Abstract Bacterial cellulose (BC)decomposes easily and the carbon residue rate is low. These factors critically restrict its application in fabricating cellulosic carbon materials. Therefore, in this paper, a simple and facile method to improve the BC carbon yield is proposed based on the stretching orientation of BC. By controlling the degree of BC deformation, the orientation and crystallinity of the BC can be adjusted, thereby sensitively affecting the graphitization degree and carbon yield of carbonized BC. Samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering, and low-field nuclear magnetic resonance (LNMR). The results indicated that when the pre-stretched strain was 40%, the crystallinity and graphitization degree of BC improved, and the carbon yield increased significantly in comparison to that of untreated BC. Thus, a low-cost, facile, and environmentally friendly method of increasing the carbon yield of BC was developed in this study.


2018 ◽  
Vol 11 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Hamdy H. Hassan ◽  
Ibrahim H.A. Badr ◽  
Hesham T.M. Abdel-Fatah ◽  
Esmat M.S. Elfeky ◽  
Ali M. Abdel-Aziz

2021 ◽  
pp. 2150395
Author(s):  
Xiang-Bing Li ◽  
Da-Qian Mo ◽  
Xiao-Yan Niu ◽  
Qian-Qian Zhang ◽  
Shu-Yi Ma ◽  
...  

ZnO–SnO2 composite nanorods with rough surfaces were synthesized via a coaxially nested needle electrospinning method. The morphology and nanostructure were characterized by scanning electron microscopy, atomic force microscope, EDS mapping, nitrogen physical adsorption, and X-ray diffraction. The synthesis mechanisms of ZnO–SnO2 nanorods were discussed, which combined the gas sensitivity advantages of different materials. ZnO–SnO2 nanorods sensor with good ethanol gas sensitivity achieved accurate measurement of continuous ethanol concentration. The sensor exhibited good selectivity to ethanol in the presence of formaldehyde, methanol, acetone, acetic acid, benzene, and xylene at 290[Formula: see text]C. The response and recovery time to 100 ppm ethanol were about 13 and 35 s, respectively. The energy band, barrier, charge transfer of ZnO–SnO2 composite material was discussed, and its optimization of gas sensitivity was analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document