scholarly journals Integration of child–parent screening and cascade testing for familial hypercholesterolaemia

2018 ◽  
Vol 26 (2) ◽  
pp. 71-75 ◽  
Author(s):  
David S Wald ◽  
Nicholas J Wald

Objective To integrate child–parent screening and cascade testing into a single pathway-child-parent cascade screening (CPCS), for the identification of familial hypercholesterolaemia in the population and to estimate the number of new familial hypercholesterolaemia cases identified per child screened and the associated costs. Methods We applied the results from the published MRC Child–Parent Screening Study to 10,000 children, together with cascade testing first degree relatives of parents with a familial hypercholesterolaemia mutation identified by child–parent screening. We estimated the number of familial hypercholesterolaemia cases identified per child screened, the median cost per familial hypercholesterolaemia case identified and the median cost per child screened to identify one case using a range of cholesterol and familial hypercholesterolaemia mutation testing costs. We present a case study to illustrate the application of CPCS in practice. Results CPCS identifies one new familial hypercholesterolaemia case per 70 children screened at a median estimated cost of £960 per new familial hypercholesterolaemia case or £4 per child screened. CPCS identifies an average of four new familial hypercholesterolaemia cases per family. In the case study, six new familial hypercholesterolaemia cases were identified, and preventive treatment started in five, with the index child expected to start when older. Conclusion CPCS for familial hypercholesterolaemia are complementary strategies. The sustainability of cascade testing relies on identifying new unrelated index cases. This is achieved with population-wide child–parent screening. Integrated CPCS is currently better than either method of familial hypercholesterolaemia detection alone. It has the potential to identify all, or nearly all, individuals with familial hypercholesterolaemia in the population at low cost.

2020 ◽  
Vol 38 (11) ◽  
pp. 1222-1230
Author(s):  
Ricardo Herbé Cruz-Estrada ◽  
Javier Guillén-Mallette ◽  
Carlos Vidal Cupul-Manzano ◽  
Josué Iván Balam-Hernández

This work presents a study on the use of wood and plastic wastes generated in abundance in Merida, Mexico, to help to reduce them in order to mitigate environmental deterioration. The use of these wastes is proposed to obtain a low-cost building material. So, the escalation process (i.e., extrusion) at the pilot level to obtain a prototype of a wood–plastic composite (WPC) corrugated sheet to evaluate the technical feasibility to make a low-cost product is reported. A corrugated sheet with recycled high-density polyethylene (R-HDPE) was produced. The R-HDPE was collected from Merida’s Separation Plant. The wood came from the trimmings of different varieties of trees and shrubs that are periodically pruned. WPC sheets with virgin HDPE were prepared to assess its effect on the materials’ mechanical performance. The wood/HDPE weight ratio was 40/60. The performance of the WPC sheets was compared with that of commercial products with similar characteristics, namely acrylic and polyester sheets reinforced with fibreglass, and black asphalt-saturated cardboard sheets. Thus, the effect of natural weathering on the maximum tensile tearing force and on the maximum flexural load of the different types of sheets was evaluated. Although the mechanical performance of the WPC sheets was lower than that of the acrylic and polyacrylic sheets, their performance was much better than that of the cheap black asphalt-saturated cardboard sheets. So, they are a good option to be used as low-cost temporary roofing.


2021 ◽  
Vol 240 ◽  
pp. 02004
Author(s):  
Latifa Boukarma ◽  
Rachid Aziam ◽  
Said Baroud ◽  
Elhassane Eddaoudi ◽  
Fouad Sinan ◽  
...  

Water pollution is an alarming problem in developing countries. Dried algae can be considered as potential and suitable bio-sorbents due to their fast and easy growth and high availability. The special surface properties of these algae allow them to adsorb different types of organic and inorganic pollutants from solutions. In this context, the removal of anionic acid blue 113 dye (AB113) from aqueous solutions by dried Corallina officinalis alga as low-cost bio-sorbent was chosen as a case study of a typical remediation process of water contaminants. The effect of various environmental and physicochemical parameters has been studied. The results show that the equilibrium adsorption was established within 120 min. The sorption phenomenon was investigated by determining the process kinetics at different concentrations and the adsorption isotherms at different temperatures. The kinetics results showed that the pseudo second-order kinetics model generates the best agreement with the experimental data. The modeling results showed that linear Langmuir and Freundlich models appear to fit the adsorption data better than Temkin model for the adsorption of AB113 onto dried C. officinalis alga. It can be concluded that C. Officinalis alga can be successfully used as adsorbent.


Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


2017 ◽  
Vol 1 (2) ◽  
pp. 34
Author(s):  
Zulkarnain Zulkarnain ◽  
Nadjadji Anwar

The Research Center and Development of Water (Puslitbang) is currently developing the Submerged Breakwater in shallow sea area (PEGAR). The author is interested to examine the material that easily obtained in the field of RCP concrete cylinder. The observation is how it to be ability in function as submerged breakwater an go green and low cost. The physical model of wave transmission test is how the response to the structure in ability to damping of wave as the breakwater function. In this research breakwater used is submerged breakwater type by using concrete cylinder (buis beton). The purpose from this research is to know how the response of breakwater structure to the waves through it, with some variation of the structure by creating a structure with three variations of the arrangement and freeboard that is the relative depth with the crest width is constant. The wave generated test in this study is using regular waves in wave flume at FTSP Civil Engineering Department of Institute Technology Ten November. From the analysis of the effect of the installation of submerged breakwater by using concrete cylinder to the wave damping value, it can be concluded that the factors that are very influential is the freeboard and the composition of concrete cylinder. Scenario A (rigid vertical massive) is capable of producing the smallest value of kt is 0.33. As for scenario B (rigid horyzontal massive) with a damping value of 0.5, while the scenario C (rigid permeable) is only able to produce kt value of 0.71. Scenario A is better than scenario B and C Because the position of arrangement of A is very good used to damp wave in small or big freeboard conditions.


Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


2005 ◽  
Vol 51 (12) ◽  
pp. 325-329 ◽  
Author(s):  
X. Wang ◽  
X. Bai ◽  
J. Qiu ◽  
B. Wang

The performance of a pond–constructed wetland system in the treatment of municipal wastewater in Kiaochow city was studied; and comparison with oxidation ponds system was conducted. In the post-constructed wetland, the removal of COD, TN and TP is 24%, 58.5% and 24.8% respectively. The treated effluent from the constructed wetland can meet the Chinese National Agricultural and Irrigation Standard. The comparison between pond–constructed wetland system and oxidation pond system shows that total nitrogen removal in a constructed wetland is better than that in an oxidation pond and the TP removal is inferior. A possible reason is the low dissolved oxygen concentration in the wetland. Constructed wetlands can restrain the growth of algae effectively, and can produce obvious ecological and economical benefits.


2021 ◽  
Vol 13 (12) ◽  
pp. 6944
Author(s):  
Emma Anna Carolina Emanuelsson ◽  
Aurelie Charles ◽  
Parimala Shivaprasad

With stringent environmental regulations and a new drive for sustainable manufacturing, there is an unprecedented opportunity to incorporate novel manufacturing techniques. Recent political and pandemic events have shown the vulnerability to supply chains, highlighting the need for localised manufacturing capabilities to better respond flexibly to national demand. In this paper, we have used the spinning mesh disc reactor (SMDR) as a case study to demonstrate the path forward for manufacturing in the post-Covid world. The SMDR uses centrifugal force to allow the spread of thin film across the spinning disc which has a cloth with immobilised catalyst. The modularity of the design combined with the flexibility to perform a range of chemical reactions in a single equipment is an opportunity towards sustainable manufacturing. A global approach to market research allowed us to identify sectors within the chemical industry interested in novel reactor designs. The drivers for implementing change were identified as low capital cost, flexible operation and consistent product quality. Barriers include cost of change (regulatory and capital costs), limited technical awareness, safety concerns and lack of motivation towards change. Finally, applying the key features of a Sustainable Business Model (SBM) to SMDR, we show the strengths and opportunities for SMDR to align with an SBM allowing for a low-cost, sustainable and regenerative system of chemical manufacturing.


2021 ◽  
Vol 731 (1) ◽  
pp. 012024
Author(s):  
M N Cahyadi ◽  
E Y Handoko ◽  
R Mardiyanto ◽  
I M Anjasmara ◽  
Khomsin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document