Design and modeling of a flexible longitudinal zigzag structure for enhanced vibration energy harvesting

2016 ◽  
Vol 28 (3) ◽  
pp. 367-380 ◽  
Author(s):  
Shengxi Zhou ◽  
Weijia Chen ◽  
Mohammad H Malakooti ◽  
Junyi Cao ◽  
Daniel J Inman

The use of piezoelectric materials for vibration energy harvesting at low frequencies is challenging and requires innovative structural design. Here, a flexible longitudinal zigzag structure is developed to enhance energy harvesting at low-frequency ambient vibrations. The proposed structure is composed of orthogonal beams which enable vibration energy harvesting in two directions. A theoretical model based on Euler–Bernoulli beam theory is formulated to study the dynamic response of the structure under free vibrations. The free vibration analysis demonstrates that low operating frequencies can be obtained by increasing the number of, and/or the length of, beams in the proposed structure. To validate the accuracy of the developed theoretical model, finite element analysis is performed using ANSYS. On verification of the model’s accuracy, the piezoelectric effect of the active beams is considered in the model to evaluate the energy harvesting performance of the proposed flexible longitudinal zigzag structure. Numerical results demonstrate that the output voltage and the working frequency of these energy harvesting structures can be tailored through simply altering the number of beams. Overall, the results indicate that the proposed structure is capable of efficient energy conversion at low frequencies, which makes them suitable for a wide range of working conditions.

Author(s):  
Ziheng Zhu ◽  
Lin Xu ◽  
Mohamed A. A. Abdelkareem ◽  
Junyi Zou ◽  
Jia Mi

Abstract With the recent energy crisis, the new energy harvesting technologies have become one of the hot spots in engineering academic research and industrial applications. By its wide range of application fields, vibration energy harvesting technologies have been gradually developed and utilized in which an efficient and stable harvester technology is one of the recent key problems. In order to improve energy harvesting efficiency and reduce energy loss caused by motor inertial commutation, many mechanical structures or hydraulic structures that convert reciprocating vibration energy into single direction rotation of motor are proposed. Although these methods can improve energy harvesting efficiency, they can have negative effects in some cases, especially in the case of vibration energy harvesting from human beings. This paper proposes a vibration harvesting mechanism with mechanical rectification filter function applied to backpack. The prototype model of the system was established in SolidWorks and imported into ADAMS. Thereafter, dynamic analyses of mechanical rectification filtering characteristics and meshing characteristics of one-way clutch were simulated in ADAMS. Based on ADAMS, parametric design analysis and its influence on the mechanical rectification characteristics were investigated. The simulation results were validated by bench test results. Simulation results is done by ADAMS and the results match well with bench test results.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 907
Author(s):  
Xiaodong Yan ◽  
Mupeng Zheng ◽  
Mankang Zhu ◽  
Yudong Hou

The question as to which piezoelectric composition is favorable for energy harvesting has been addressed in the past few years. However, discussion on this topic continues. In this work, an answer is provided through a feasible method which can be used in selecting piezoelectric material. The energy harvesting behavior of hard (P4 and P8) and soft (P5 and P5H) lead zirconate titanate (PZT) ceramics was investigated. The results show that the maximum piezoelectric voltage coefficient g33 and transduction coefficient d33 × g33 were obtained in P5 ceramic. Meanwhile, the power generation characteristics at low frequencies were compared by the vibration energy harvester with a cantilever beam structure. The results indicate that the energy harvester fabricated by the P5 ceramic with the maximum d33 × g33 values also demonstrated the best power generation characteristics. The results unambiguously demonstrate that the power density and energy conversion efficiency of the energy harvesting devices are dominated by the d33 × g33 value of the piezoelectric materials.


2016 ◽  
Vol 28 (3) ◽  
pp. 408-420 ◽  
Author(s):  
Chase A Ray ◽  
Steven R Anton

Electronic devices are high-demand commodities in today’s world, and such devices will continue increasing in popularity. Currently, batteries are implemented to provide power to these devices; however, the need for battery replacement, their cost, and the waste associated with battery disposal present a need for advances in self-powered technology. Energy harvesting technology has great potential to alleviate the drawbacks of batteries. In this work, a novel piezoelectret foam material is investigated for low-level vibration energy harvesting. Specifically, piezoelectret foam assembled in a multilayer stack configuration is explored. Modeling and experimentation of the stack when excited in compression at low frequencies are performed to investigate piezoelectret foam for multilayer energy harvesting. An equivalent circuit model derived from the literature is used to model the piezoelectret stack. Two 20-layer prototype devices and one 40-layer prototype device are fabricated and experimentally tested via harmonic base excitation. Electromechanical frequency response functions between input acceleration and output voltage are measured experimentally. Modeling results are compared to experimental measurements to assess the fidelity of the model near resonance. Finally, energy harvesting experimentation in which the device is subject to harmonic base excitation at the fundamental natural frequency is conducted to determine the ability of the stack to successfully charge a capacitor. For a 20-layer stack excited at 0.5  g, a 100-µF capacitor is charged to 1.45 V in 15 min, and produces a peak power of 0.45 µW. A 40-layer stack is found to charge a 100-µF capacitor to 1.7 V in 15 min when excited at 0.5  g, and produce a peak power of 0.89 µW.


2015 ◽  
Vol 15 (3) ◽  
pp. 452
Author(s):  
Sang Ying-Jun ◽  
Wu Shangguang ◽  
Li Man ◽  
Gao Yang ◽  
Li Haoxiang ◽  
...  

As a result of the electric vehicles popularity and the development of vehicles intelligent, the number of vehicle sensors surge, meanwhile, many defects of traditional energy supply are increasingly prominent, such as pollution and maintenance difficulties. Taking into account the vehicle vibration exist everywhere, we use the piezoelectric technology to collect vibration energy, and designs a piezoelectric vibration energy harvesting system to be used to solve the energy problem of micro-power sensor. In this paper, the system structure and the theoretical model are analyzed, and the mathematical model of the system vibration frequency and the piezoelectric output have been put forward, then a piezoelectric energy harvesting device is designed on the basis of simulation analysis. Experiments have been done to test the performance of its power generation in the case of resonance. The results showed that the theoretical model proposed in this paper can be a good predictor of the output characteristics of the system. As the resonance frequency is 16.5 Hz, acceleration is 0.5g, the maximum open circuit voltage of the system obtained is 3.5 volts, the optimum load resistance is 425kΩ, and the vibration energy collection device maximum load power is 14 uW. Conclusion: Greater energy could be caught to meet the vehicle sensor power supply needs with the use of super capacitor.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2031
Author(s):  
Jinming Ye ◽  
Toru Tanzawa

This paper shows how clocked AC-DC charge pump circuits can be optimally designed to have the minimum circuit area for small form factor vibration energy harvesting. One can determine an optimum number of stages with simple equations and then determine the capacitance of each pump capacitor to have a target output current at a target output voltage. The equations were verified under a wide range of design parameters by comparing the output current with the simulated one. The output current of the circuit designed by the equations was in good agreement with the simulated result, to within 5% for 98% of the 1600 designs with different parameters. We also propose a design flow to help designers determine the initial design parameters of a clocked AC-DC charge pump circuit (i.e., the number of stages, capacitance per stage, and the total size of rectifying devices) under the condition that the saturation current of a unit of the rectifying device, clock frequency, amplitude of the voltage generated by the energy transducer, target output voltage, and target output current are given. SPICE simulation results validated theoretical results with an error of 3% in terms of the output current when a clocked AC-DC charge pump was designed to output current of 1 μA at 2.5 V from a vibration energy harvester with an AC voltage amplitude of 0.5 V.


Author(s):  
Vinod R. Challa ◽  
M. G. Prasad ◽  
Yong Shi ◽  
Frank Fisher

Although wireless sensors show extensive promise across a wide range of applications, one requirement necessary for widespread deployment is a suitable long-life power source. Self sustainable powering techniques allow for efficient use of these sensors, whose potential life is usually longer than that of the power sources. Vibration energy harvesting techniques offer to have the potential to be employed in powering these devices. The most important requirement of vibration energy harvesting devices is that they be in resonance to harvest energy efficiently. Most of the vibration energy harvesting devices built, irrespective of the mechanism involved, are based on a single resonance frequency, with the efficiency of these devices is very much limited to that specific frequency. In this paper, a frequency tunable mechanism is presented which allows the energy harvesting device to generate power over a wide range of frequencies. External magnetic forces have been used to induce additional stiffness which is variable depending on the distance between the magnets. This technique allowed us to tune the resonance frequencies to have +/− 20% of the original (untuned) resonant frequency. Further, the device can be tuned to higher and lower frequency with respect to the untuned resonance frequency by using attractive and repulsive magnetic forces, respectively. As a proof-of-concept, a piezoelectric cantilever-based energy harvesting device with a natural frequency of 26 Hz was fabricated whose resonance frequency was successfully tuned over a frequency range of 22 Hz to 32 Hz, enabling a continuous power output of 240 μW to 280 μW over the entire frequency range. The tuning mechanism can be employed to any vibrating structure.


2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Chung Ket Thein ◽  
Faruq Muhammad Foong

Triangular cantilever beams are often desired in piezoelectric vibration energy harvesting applications, as they result in a better performance due to the higher and more uniform stress they exhibit. However, the application of this cantilever geometry has not yet been explored for other transduction methods. In this study, the application of a triangular cantilever beam for a cantilevered electromagnetic vibration energy harvester was examined by analyzing its material damping and comparing it to a regular rectangular beam. The material damping of the harvester was predicted through finite element analysis using the critically damped stress method. Under the same beam volume or beam length, the triangular cantilever beam exhibited an approximately 7.1% lower material damping when compared to a rectangular cantilever beam. Further analysis shows that the triangular beam can also deliver a 21.7% higher power output than the rectangular beam.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document