Development of a novel piezoelectric-actuated inertial pump using bionic valve

Author(s):  
Ji Ding ◽  
Yi Cao ◽  
Quanqu Chen ◽  
Jingshi Dong ◽  
Zhi Xu ◽  
...  

Sampling fluids from the small-diameter deep pipeline is a challenging problem. In this paper, a very simple, piezoelectric-actuated inertial pump (PIP) is developed using a bionic valve to solve these problems. The PIP consists of simple components, including a cantilever beam piezoelectric actuator, a hard tube, and a bionic valve made of silicone. The fluid is driven by the inertial force generated in the vibration process of the tube. A new bionic valve inspired by a heart valve has been designed which has the advantages of small flow resistance and large flow area. The authors described the working principle of PIP in detail, established the flow characteristics model of the bionic valve, and used COMSOL Multiphysics to analyze the characteristics of the bionic valve. By comparing the response characteristics of the bionic valve with different tilt angles, the optimal Angle was obtained. Finally, the experimental and simulation results were compared, and the basic performance of PIP was tested. The experimental results showed that: When the tilting angle was 45° and the valve hole diameter was 6 mm, when the voltage was 98 V and the frequency was 24.5 Hz, the maximum output flow of the piezoelectric pump was 170.25 ml/min.

2021 ◽  
Vol 11 (7) ◽  
pp. 2909
Author(s):  
Weiqing Huang ◽  
Liyi Lai ◽  
Zhenlin Chen ◽  
Xiaosheng Chen ◽  
Zhi Huang ◽  
...  

Imitating the structure of the venous valve and its characteristics of passive opening and closing with changes in heart pressure, a piezoelectric pump with flexible valves (PPFV) was designed. Firstly, the structure and the working principle of the PPFV were introduced. Then, the flexible valve, the main functional component of the pump, was analyzed theoretically. Finally, an experimental prototype was manufactured and its performance was tested. The research proves that the PPFV can achieve a smooth transition between valved and valveless by only changing the driving signal of the piezoelectric (PZT) vibrator. The results demonstrate that when the driving voltage is 100 V and the frequency is 25 Hz, the experimental flow rate of the PPFV is about 119.61 mL/min, and the output pressure is about 6.16 kPa. This kind of pump can realize the reciprocal conversion of a large flow rate, high output pressure, and a small flow rate, low output pressure under the electronic control signal. Therefore, it can be utilized for fluid transport and pressure transmission at both the macro-level and the micro-level, which belongs to the macro–micro combined component.


2013 ◽  
Vol 774-776 ◽  
pp. 312-315
Author(s):  
Zhan Xiong Lu

Electromagnetic vibration pump is one type of first proposed new household positive displacement pump.It is mainly used to transport water and other low viscosity liquid. It has many advantages including small flow, high head, simple structure,good self-priming performance. Electromagnetic driving method was combined with displacement pump in vibration pump for the first time. Its specific speed can reach below 10,and this is a breakthrough in super-low specific speed pump design. The working principle of electromagnetic vibration pump and its performance were studied in the paper. each of these problems is further discussed and explained in order to point out the research field for the development of electromagnetic vibration pump later.


Author(s):  
Ms. K. P. Bhangle

Abstract: The capillary tube is commonly employed in refrigerant flow control systems. As a result, the capillary tube's performance is optimal for good refrigerant flow. Many scholars concluded performance utilising experimental, theoretical, and analysis-based methods. This paper examines the flow analysis of a refrigerant within a capillary tube under adiabatic flow circumstances. For a given mass flow rate, the suggested model can predict flow characteristics in adiabatic capillary tubes. In the current work, R-134a refrigerant has been replaced by R600a refrigerant as a working fluid inside the capillary tube, and the capillary tube design has been modified by altering length and diameter, which were obtained from reputable literature. The analysis is carried out using the ANSYS CFX 16.2 software. The results show thatutilising a small diameter and a long length (R600a refrigerant flow) is superior to the present helical capillary tube. The most appropriate helical coiled design with a diameter of 0.8 mm and a length of 3 m is proposed. Keywords: Capillary Tube, Condenser, Refrigeration effect, CFD.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Xinhai Li ◽  
Yong Cheng ◽  
Xiaoyan Ma ◽  
Xue Yang

The inner-flow of gasoline direct injection (GDI) injector nozzles plays an important role in the process of spray, and affects the mixture process in gasoline engine cylinder. The nozzle structure also affects the inner-flow of GDI injector. In order to obtain uniform performance of GDI injector, the size consistency of injector nozzle should be ensured. This paper researches the effect of nozzle length and diameter on the inner flow and analyzes the sensitivity of inner flow characteristics to these structural parameters. First, this paper reveals the process of inception, development, and saturated condition of cavitation phenomenon in injector nozzle. Second, the inner-nozzle flow characteristics are more sensitive to small diameter than large diameter under the short nozzle length, while the sensitivity of the inner-nozzle flow characteristics to large nozzle diameter becomes strong as the increase of the nozzle length. Finally, the influence of nozzle angle on the injection mass flow is studied, and the single nozzle fuel mass will increase as the decrease of nozzle angle α. And the sensitivity of inner-flow characteristic to nozzle angle becomes strong as the decrease of α.


2018 ◽  
Vol 51 (31) ◽  
pp. 154-157
Author(s):  
Qiang Wang ◽  
Baiyu Xin ◽  
Pengyuan Sun ◽  
Jialing Li ◽  
Qifang Liu

2016 ◽  
Vol 10 (4) ◽  
pp. 540-548 ◽  
Author(s):  
Daisuke Hirooka ◽  
◽  
Tomomi Yamaguchi ◽  
Naomichi Furushiro ◽  
Koichi Suzumori ◽  
...  

The authors have previously developed a compact, light-weight air flow control valve, which realizes continuous flow control. The vibration produced by a piezoelectric device (PZT) was used to excite particles confined in a flow channel to control the valve opening for the developed control valve. Therefore, the voltage applied to the PZT can be changed to continuously control the flow rate. A new working principle was developed for the control valve to stabilize flow rate characteristics. Different types of particles were used to change the valve opening condition. A prototype was manufactured to demonstrate the effectiveness of the control valve.


2000 ◽  
Vol 2000.1 (0) ◽  
pp. 819-820
Author(s):  
Hiroaki TSUBONE ◽  
Hiroki NARIYASU ◽  
Akimaro KAWAHARA ◽  
Michio SADATOMI

Author(s):  
Daichi Ishii ◽  
Kohei Aratake ◽  
Tatsuya Otsuka ◽  
Masatsugu Yoshizawa

A multibody system that moves with fluid inside a small-diameter tube is applied to some parts of industry such as a PIG and it is also expected to be developed for future engineering applications. As a first step to considering a multibody system, this study focused on elucidating the flow characteristics around a single rigid body and understanding the effect of a bypass hole. The model considered has been a single rigid body moving at a constant velocity in a narrow tube. Assuming that the flow is steady axisymmetric laminar flow, the fluid flow around the body has been experimentally observed and numerically analyzed. A Rankine’s combined vortex was observed around the body and it was also observed that a layer of fluid near the top wall has characteristics of the boundary layer. Furthermore, a minimum allowable thickness of a bypass hole to cause the successful front-drive effect was obtained.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Chen Wang ◽  
Lujie Zhou ◽  
Yujing Jiang ◽  
Xuepeng Zhang ◽  
Jiankang Liu

An appropriate understanding of the hydraulic characteristics of the two-phase flow in the rock fracture network is important in many engineering applications. To investigate the two-phase flow in the fracture network, a study on the two-phase flow characteristics in the intersecting fractures is necessary. In order to describe the two-phase flow in the intersecting fractures quantitatively, in this study, a gas-water two-phase flow experiment was conducted in a smooth 3D model with intersecting fractures. The results in this specific 3D model show that the flow structures in the intersecting fractures were similar to those of the stratified wavy flow in pipes. The nonlinearity induced by inertial force and turbulence in the intersecting fractures cannot be neglected in the two-phase flow, and the Martinelli-Lockhart model is effective for the two-phase flow in intersecting fractures. Delhaye’s model can be adapted for the cases in this experiment. The turbulence of the flow can be indicated by the values of C in Delhaye’s model, but resetting the appropriate range of the values of C is necessary.


Sign in / Sign up

Export Citation Format

Share Document