Finite element modelling of plain and reinforced concrete specimens with the Kotsovos and Pavlovic material model, smeared crack approach and fine meshes

2021 ◽  
pp. 105678952098660
Author(s):  
George Markou ◽  
Wynand Roeloffze

Modelling of concrete through 3 D constitutive material models is a challenging subject due to the numerous nonlinearities that occur during the monotonic and cyclic analysis of reinforced concrete structures. Additionally, the ultimate limit state modelling of plain concrete can lead to numerical instabilities given the lack of steel rebars that usually provide with the required tensile strength inducing numerical stability that is required during the nonlinear solution procedure. One of the commonly used 3 D concrete material models is that of the Kotsovos and Pavlovic, which until recently it was believed that when integrated with the smeared crack approach, it can only be used in combination with relatively larger in size finite elements. The objective of this study is to investigate into this misconception by developing different numerical models that foresee the use of fine meshes to simulate plain concrete and reinforced concrete specimens. For the needs of this research work, additional experiments were performed on cylindrical high strength concrete specimens that were used for additional validation purposes, whereas results on a reinforced concrete beam found in the international literature were used as well. A discussion on the numerical findings will be presented herein by comparing the different experimental data with the numerically predicted mechanical response of the under study concrete material model.

2015 ◽  
Vol 769 ◽  
pp. 139-144
Author(s):  
Mirosław Wieczorek

One of the fundamental elements applied in reinforced concrete structures are beams. Depending on the proportion of the dimensions and the way of imposing the load, two fundamental mechanisms of destruction are to be distinguished (brittle destruction caused by shearing the supporting zones or flexural destruction in the zone of the span). The present paper provides the results of the analysis of four reinforced concrete beams with the dimensions 4000×400×200 mm, reinforced with steel of varying ductility. The aim of this analysis was to reflect and to provide more detailed information about the phenomena observed in the course of laboratory investigations. The numerical models were constructed in compliance with the system ANSYS, applying volumetric elements Solid 65 and bars Link 8. In order to determine the relation σ-ε of the steel an isotropic model of strengthening according to Misses was implemented in the system ANSYS. The behaviour of concrete was represented making use of the material model Concrete. The parameters applied in the material models were obtained basing on laboratory tests of materials. The results of calculations have been quoted in the paper, as well as their comparison with the results of investigations carried out in the laboratory.


2014 ◽  
Vol 566 ◽  
pp. 173-178
Author(s):  
M.A.K.M. Madurapperuma ◽  
Kazukuni Niwa

Performance of three widely used concrete material models available in LS-DYNA is compared using experimental results of drop-weight impact on a reinforced concrete (RC) beam and high speed aircraft engine missile impact on an RC wall. An overview of these material models and typical concrete material behavior shown by these models using single element analysis are also presented. The study is useful for users who have limited experience on the selection of an appropriate material model for concrete in impact simulation of RC structures.


Author(s):  
Martin Storheim ◽  
Ekaterina Kim ◽  
Jørgen Amdahl ◽  
Sören Ehlers

Large natural resources in the Arctic region will in the coming years require significant shipping activity within and through the Arctic region. When operating in Arctic open water, there is a significant risk of high-energy encounters with smaller ice masses like bergy bits and growlers. Consequently, there is a need to assess the structural response to high energy encounters in ice-infested waters. Experimental data of high energy ice impact are scarce, and numerical models could be used as a tool to provide insight into the possible physical processes and to their structural implications. This paper focuses on impact with small icebergs and bergy bits. In order to rely on the numerical results, it is necessary to have a good understanding of the physical parameters describing the iceberg interaction. Icebergs are in general inhomogeneous with properties dependent among other on temperature, grain size, strain rate, shape and imperfections. Ice crushing is a complicated process involving fracture, melting, high confinement and high pressures. This necessitates significant simplifications in the material modeling. For engineering purposes a representative load model is applied rather than a physically correct ice material model. The local shape dependency of iceberg interaction is investigated by existing representative load material models. For blunt objects and moderate deformations the models agree well, and show a similar range of energy vs. hull deformation. For sharper objects the material models disagree quite strongly. The material model from Liu et.al (2011) crush the ice easily, whereas the models from Gagnon (2007) and Gagnon (2011) both penetrate the hull. From a physical perspective, a sharp ice edge should crush initially until sufficient force is mobilized to deform the vessel hull. Which ice features that will crush or penetrate is important to know in order to efficiently design against iceberg impact. Further work is needed to assess the energy dissipation in ice during crushing, especially for sharp features. This will enable the material models to be calibrated towards an energy criterion, and yield more coherent results. At the moment it is difficult to conclude if any of the ice models behave in a physically acceptable manner based on the structural deformation. Consequently, it is premature to conclude in a design situation as to which local ice shapes are important to design against.


2015 ◽  
Vol 769 ◽  
pp. 133-138
Author(s):  
Mirosław Wieczorek

In the time of exploitation of building structures frequently situations do occur, in which due to failures they are exposed to much higher loads than originally predicted. The subject matter of the performed investigations and a numerical analysis are models of four narrow reinforced concrete slabs with the dimensions 7140×500×190 mm. The paper presents the results of the numerical analysis, the aim of which was to reflect and to provide detailed information about phenomena occurring in the course of laboratory tests. Numerical models were constructed according to the system ANSYS, applying volumetric elements SOLID65 and bars LINK8. In order to determine the relation σ-ε of steel an isotropic model of strengthening in the system ANSYS was used, constructed by Misses. The behaviour of concrete was represented by the material model Concrete. The parameters applied in the material models had been obtained in laboratory tests of the material. The paper quotes the results of calculations compared with the results obtained in laboratory tests.


2008 ◽  
Vol 14 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Viktor Gribniak ◽  
Gintaris Kaklauskas ◽  
Darius Bacinskas

This paper introduces the recent state of research on shrinkage of concrete. It reviews prediction models of shrinkage strain and curvature analysis methods of reinforced concrete members. New test data on concrete shrinkage has been presented. Various factors that influence shrinkage have been discussed. A calculation technique on short‐term deformations of cracked reinforced concrete members including shrinkage has been introduced. The technique is based on layer model and smeared crack approach. Shrinkage influence on behaviour of reinforced concrete beams was investigated numerically and compared with test data reported in the literature. It has been shown that shrinkage has significantly reduced the cracking resistance and leads to larger deflections. Santrauka Straipsnyje atlikta betono traukimosi įtakos gelžbetoninių elementų elgsenai analizė, pateikta betono traukimosi deformacijų apskaičiavimo modelių apžvalga, aptarti traukimosi sukeltų kreivių nesimetriškai armuotuose gelžbetoniniuose elementuose apskaičiavimo metodai, taip pat pateikti nauji betono traukimosi eksperimentinių tyrimų duomenys. Aptarti veiksniai, turintys įtaką traukimosi deformacijoms, aprašytas supleišėjusių gelžbetoninių elementų trumpalaikių deformacijų apskaičiavimo algoritmas, rodantis traukimosi įtaką. Algoritmas pagrįstas sluoksnių modeliu ir vidutinių deformacijų koncepcija. Traukimosi įtaka gelžbetoninių sijų elgsenai nagrinėta, taikant normų bei sluoksnių metodus. Teoriniai rezultatai palyginti su literatūroje paskelbtais eksperimentinių tyrimų rezultatais. Parodyta, kad betono traukimasis gerokai sumažina trumpalaike apkrova veikiamų gelžbetoninių sijų atsparumą pleišėjimui bei lemia didesnes įlinkių reikšmes.


Author(s):  
B Winkler ◽  
G Hofstetter ◽  
G Niederwanger

A constitutive model for concrete cracking, based on the smeared crack approach within the framework of the theory of plasticity, was verified by experiments on L-shaped structural members. The model is used for finite element ultimate load analyses of plain and reinforced concrete structures. The experimental investigations consisted of a series of L-shaped structural members, made of plain concrete and three series of reinforced L-shaped structural members with different layout of the reinforcement, which were loaded until failure. The comparison between experimental and computed results included the load at the initiation of cracking and the load-displacement curves in the pre- and post-peak regions. Additionally, the experimentally determined crack patterns were compared with the computed crack propagation and damage behaviour of the material.


2020 ◽  
Vol 19 (1) ◽  
pp. 204-214
Author(s):  
Anju Maharjan ◽  
Hari Ram Parajuli

 The research work was aimed evaluating the newly built stone masonry houses with mud mortar and with the provision of horizontal reinforced concrete (R.C.) bands. Two recently built stone masonry houses of different geometry were selected, modeled, and analyzed to investigate the seismic performance of stone masonry houses constructed with horizontal bands. Linear time history analysis was used and performance of the selected buildings was checked with the help of various numerical models. The top roof displacement, maximum drift ratio, base shear, and shell stress were compared between two selected models using three earthquake time histories. The fragility curves were also developed to identify the probability of the failure of the buildings at different peak acceleration values using three earthquake time histories.


2019 ◽  
Vol 8 (3) ◽  
pp. 7171-7175

This research work has experimentally investigated on the effects of low modulus fibers (PP) used in concrete for the various percentages like 0. 0.5% and 1.0% (by volume fraction) along with different percentage of sugar cane bagasse ash from 0 to 15% replaced in Portland cement (by weight of binding material) for different mixes and tested for the various properties of high-performance concrete (HPC). This experimental test results indicated that the usage of SCBA is restricted up to 10% with 0.5% of PP (Polypropylene) along with 1.5% of superplasticizers produces the higher flexural strength was increased up to 78.30% and compressive strength of concrete was increased up to 25.80% when compared to control (plain) concrete at 28 days. Finally, the usage of low modulus fibre reinforced concrete to act as a corrosion inhibitor agent during the chloride attack than compared to high modulus fibers and reduce the plastic shrinkage due to excellent flexibility in concrete and also increases the life span.


2000 ◽  
Vol 6 (5) ◽  
pp. 329-338
Author(s):  
Gintaris Kaklauskas

The paper reviews both analytical and finite element methods for deformational analysis of flexural reinforced concrete members subjected to short-term loading. In a state-of-the-art summary of various proposed stress-strain relationships for concrete and reinforcement, a special emphasis is made on critical survey of modelling post-cracking behaviour of tensile concrete in smeared crack approach. Empirical code methods of different countries (American Code (ACI Committee 318 [7]), the Eurocode EC2 [8], and the Russian (old Soviet) Code (SNiP 2.03.01-84 [5]) for deflection calculation of flexural reinforced concrete members are briefly described in section 2. Although these methods are based on different analytical approaches, all of them proved to be accurate tools for deflection assessment of members with high and average reinforcement ratios. It should be noted that these methods have quite a different level of complexity since the Russian Code method employs a great number of parameters and expressions whereas the ACI and EC2 methods are simple and include only basic parameters. Approaches of numerical simulation and constitutive relationships are discussed in Chapter 3. All numerical simulation research can be classified into two large groups according to two different approaches for crack modelling (subsection 3.1): 1) Discrete cracking model. In this approach, cracks are traced individually as they progressively alter the topology of the structure. 2) Smeared cracking model. The cracked concrete is assumed to remain a continuum, ie the cracks are smeared out in the continuous fashion. After cracking, the concrete becomes orthotropic with one of the material axes being oriented along the direction of cracking. Constitutive relationships for steel and plain concrete are presented in subsection 3.2. A special emphasis is made on critical survey of modelling post-cracking behaviour of tensile concrete in smeared crack approach. It has been concluded that although empirical design codes of different countries ensure safe design, they do not reveal the actual stress-strain state of cracked structures and often lack physical interpretation. Numerical methods which were rapidly progressing within last three decades are based on universal principles and can include all possible effects such as material nonlinearities, concrete cracking, creep and shrinkage, reinforcement slip, etc. However, the progress is mostly related to the development of mathematical apparatus, but not material models or, in other words, the development was rather qualitative than quantitative. Constitutive relationships often are too simplified and do not reflect complex multi-factor nature of the material. Existing constitutive relationships for concrete in tension do not assure higher statistical accuracy of deflection estimates for flexural reinforced concrete members in comparison to those obtained by empirical code methods. The author has developed integral constitutive model for deformational analysis of flexural reinforced concrete members [36]. The integral constitutive model consists of traditional constitutive relationships for reinforcement and compressive concrete and the integral constitutive relationship for cracked tensile concrete which accumulates cracking, tension stiffening, reinforcement slippage and shrinkage effects. This constitutive model can be applied not only in a finite element analysis, but also in a simple iterative technique based on classical principles of strength of materials extended to layered approach.


Sign in / Sign up

Export Citation Format

Share Document