Failure mechanism of Ω-shape 3D orthogonal woven composite component under transverse low-velocity impact and subsequent axial compression load

2021 ◽  
pp. 105678952110365
Author(s):  
Zhongxiang Pan ◽  
Mingling Wang ◽  
Zhiping Ying ◽  
Xiaoying Cheng ◽  
Zhenyu Wu

Failure mechanism of complex profile component is always different from that of conventional plate counterpart due to the coupling effect of material and structure. In this work, the low-velocity impact (LVI) and compression after impact (CAI) behaviors of Ω-shape hybrid carbon/Kevlar 3 D orthogonal woven (3DOW) composite made for vehicle B-pillar were comprehensively studied by mechanical tests and mesoscale finite element (FE) analysis at component level, high-speed infrared (IR) thermal imaging, acoustic emission (AE) detection, and microscopic damage morphology characterization. It is found that a through-thickness stress concentration ring leads to high stress state and damage zone penetrating from the impact side to non-impact side along the ring path instead of at the lowest impactor position. The slope effect can not only help the stress conduction downward, but also inhibit the damage propagation from the impact side to the slope. Impact-induced cracks are concentrated around the R corners and extended along the axial direction of the specimen, forming the strip-shaped damage concentration zone along the upper eave of the slope. The Progressive Top-Down Crushing (PTDC) mode of compression after impact is due to the complex deformation process of each yarn such as squeezing, folding and eversion in the crushing process from the top of specimen. And the Middle Indentation Fracture (MIF) mode is the result of bending instability and abrupt fracture. This work presents a reference significance for the further development of composite strengthening components in vehicle bodywork.

1999 ◽  
Author(s):  
Uday K. Vaidya ◽  
Mohan V. Kamath ◽  
Mahesh V. Hosur ◽  
Anwarul Haque ◽  
Shaik Jeelani

Abstract In the current work, sandwich composite structures with innovative constructions referred to as Z-pins, or truss core pins are investigated, in conjunction with traditional honeycomb and foam core sandwich constructions, such that they exhibit enhanced transverse stiffness, high damage resistance and furthermore, damage tolerance to impact. While the investigations pertaining to low velocity impact have appeared recently in Vaidya et al. 1999, the current paper deals with compression-after-impact studies conducted to evaluate the residual properties of sandwich composites “with” and “without” reinforced foam cores. The resulting sandwich composites have been investigated for their low velocity (< 5 m/sec) impact loading response using instrumented impact testing at energy levels ranging from 5 J to 50 J impact energy. The transverse stiffness of the cores and their composites has also been evaluated through static compression studies. Compression-after-impact studies were then performed on the sandwich composites with traditional and pin-reinforcement cores. Supporting vibration studies have been conducted to assess the changes in stiffness of the samples as a result of the impact damage. The focus of this paper is on the compression-after-impact (CAI) response and vibration studies with accompanying discussion pertaining to the low velocity impact.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4143
Author(s):  
Jie Xiao ◽  
Han Shi ◽  
Lei Tao ◽  
Liangliang Qi ◽  
Wei Min ◽  
...  

Filament-wound composite tubular structures are frequently used in transmission systems, pressure vessels, and sports equipment. In this study, the failure mechanism of composite tubes reinforced with different fibres under low-velocity impact (LVI) and the radial residual compression performance of the impacted composite tubes were investigated. Four fibres, including carbon fiber-T800, carbon fiber-T700, basalt fibre, and glass fibre, were used to fabricate the composite tubes by the winding process. The internal matrix/fibre interface of the composite tubes before the LVI and their failure mechanism after the LVI were investigated by scanning electric microscopy and X-ray micro-computed tomography, respectively. The results showed that the composite tubes mainly fractured through the delamination and fibre breakage damage under the impact of 15 J energy. Delamination and localized fibre breakage occur in the glass fibre-reinforced composite (GFRP) and basalt fibre-reinforced composite (BFRP) tubes when subjected to LVI. While fibre breakage damage occurs globally in the carbon fibre-reinforced composite (CFRP) tubes. The GFRP tube showed the best impact resistance among all the tubes investigated. The basalt fibre-reinforced composite (BFRP) tube exhibited the lowest structural impact resistance. The impact resistance of the CFRP-T700 and CFRP-T800 tube differed slightly. The radial residual compression strength (R-RCS) of the BFRP tube is not sensitive to the impact, while that of the GFRP tube is shown to be highly sensitive to the impact.


2019 ◽  
Vol 26 (1) ◽  
pp. 517-530 ◽  
Author(s):  
Ye Wu ◽  
Yun Wan

AbstractDue to the properties of shape memory effect and super-elasticity, shape memory alloy (SMA) is added into glass fiber reinforced polymer (GFRP) face-sheets of foam core sandwich panels to improve the impact resistence performance by many researchers. This paper tries to discuss the failure mechanism of sandwich panels with GF/ epoxy face-sheets embedded with SMA wires and conventional 304 SS wire nets under low-velocity impact and compression after impact (CAI) tests. The histories of contact force, absorbed energy and deflection during the impact process are obtained by experiment. Besides, the failure modes of sandwich panels with different ply modes are compared by visual inspection and scanning electron microscopy (SEM). CAI tests are conducted with the help of digital image correlation (DIC) technology. Based on the results, the sandwich panels embedded with SMA wires can absorb more impact energy, and show relatively excellent CAI performance. This is because the SMA wires can absorb and transmit the energy to the outer region of GFRP face-sheet due to the super-elasticity-behavior. The failure process and mechanism of the CAI test is also discussed.


2010 ◽  
Vol 118-120 ◽  
pp. 216-220 ◽  
Author(s):  
Hao Chen ◽  
Xiao Yan Tong ◽  
Xiang Zheng ◽  
Lei Jiang Yao

One of the problems preventing the industrial application of composites is the lack of an efficient method to detect and discriminate among types of damage occurring during service. To solve this problem, low velocity impact experiments are carried out on T300/QY8911 composite laminates. And synchronously, the acoustic emission (AE) technique and impact monitoring systems were used to record the AE signals and the impact force. The damage evolution, damage modes and acoustic emission (AE) activity were easily detected and evaluated by the analysis of both AE waveform and impact load. In this way, the damage development process containing matrix cracking, delamination and fibers breakage is investigated. The energy release of damage are theoretically approximated and correlated with the AE energy. By the theory, the “high energy damage zone” is defined in the scatter diagrams of amplitude-frequency. It is easily to prove that the primary damage mode of “high energy damage zone” is delamination.


2008 ◽  
Vol 47-50 ◽  
pp. 1205-1208 ◽  
Author(s):  
Iqbal Kosar ◽  
Khan Shafi Ullah ◽  
Jang Kyo Kim ◽  
Arshad Munir

The influence of nanoclay on the impact damage resistance of carbon fiber-epoxy (CFRP) composites has been investigated using the low-velocity impact and compression after impact tests. The load-energy vs time relations were analyzed to gain insight into the damage behaviors of the materials. Compression-after-impact (CAI) test was performed to measure the residual compressive strength. The CFRPs containing organoclay brought about a significant improvement in impact damage resistance and damage tolerance. The composites containing organoclay exhibited an enhanced energy absorption capability with less damage areas and higher CAI strengths compared to those made from neat epoxy. A 3wt% phr was shown to be an optimal content with the highest damage resistance.


Materials ◽  
2005 ◽  
Author(s):  
Kamaldeen Yusuff ◽  
Mohammad Mahinfalah ◽  
Amin Salehi-Khojin ◽  
Mohammad Alimi

The response of composite laminates to low velocity impact at different energy levels for carbon fiber, carbon/Zylon and carbon/Kevlar composites were investigated in this study. The samples consisted of impact-side face sheet having different combination of 8-layer carbon, 6-layer carbon/2-layer Zylon and 6-layer carbon/2-layer Kevlar laminates. Tests were conducted at energy levels of 8J, 15J, 25J, and 50J. The aim of this study was to investigate the impact of adding a high modulus fiber or low modulus fiber to carbon fiber with respect to Low velocity impact at different energy levels. Results and overall conclusions for each of the composite laminates are presented in detail.


2018 ◽  
Vol 53 (8) ◽  
pp. 738-745 ◽  
Author(s):  
Camila Medeiros Dantas de Azevedo ◽  
Rayane Dantas da Cunha ◽  
Raimundo Carlos Silverio Freire Junior ◽  
Wanderley Ferreira de Amorim Junior

This study aimed to develop a model to analyze the residual strength of composites after low-velocity impact, using three-point bending and compression after impact tests. Two types of composite laminates with an orthophthalic polymer matrix were used: one reinforced with bidirectional E-glass fabric and the other reinforced with bidirectional Kevlar-49 fabric. To that end, an equation was developed to assess loss of strength and stiffness after impact at different distances from the impact point, and this equation was not found in any previously searched article. The results demonstrate that the laminate based in glass fiber is more appropriate for the repair process.


2021 ◽  
pp. 109963622199818
Author(s):  
RS Jayaram ◽  
VA Nagarajan ◽  
KP Vinod Kumar

Hybridization of sandwich panels and their different components have drawn huge attention due to the significant improvement in their attributes. Hybrid core of ‘Polyester Pin-reinforced Foam filled Honeycomb Sandwich panels’ (PFHS) were fabricated and compared with unreinforced ‘Foam filled Honeycomb Sandwich panels’ (FHS) in terms of low velocity impact and Compression After Impact (CAI) performance. The impact damage area was calculated by employing MATLAB image processing technique. Incorporating through thickness pins for connecting faces and core is an effectual way to improve interfacial bonding, specific bending stiffness and also imparts out of plane properties for sandwich panels. The low velocity impact tests performed on the sandwich panels revealed that the polyester pin reinforcement in foam filled honeycomb sandwich panel improved the load bearing capacity, total absorbed energy and reduced the impact damage area significantly. In CAI test, debond, wrinkling of face sheet, and buckling of face sheet and core are the major modes of failure. The addition of the pins enhanced the compressive strength for all the impact energy levels.


1991 ◽  
Vol 113 (3) ◽  
pp. 182-188 ◽  
Author(s):  
S. S. Pang ◽  
A. A. Kailasam

The objective of this study was to gain a better understanding of the low-velocity impact phenomena of composite pipe. The focus was on test method development, and material and damage characterization. A drop weight tower tester was designed in this investigation. The dynamic tests were conducted using three different impactor geometries, velocities, and masses. It was found that the damage was localized and on the outer surface of the pipe in the case of the conical and wedge tip impactors. On the other hand, the damage zone was larger than the impact zone for the hemispherical impactor, and cracks were first seen within the inner surface of the pipe. This implies that the hemispherical tip impactor caused more damage to the pipe than the conical or wedge tips. The energy absorbed slightly increased with an increase in velocity or in mass. The contact period for the conical impactor was the longest. The velocity and mass of the impactor had only a slight effect on that period. The wedge impactor generated the largest peak force. The energy absorbed by the two composite pipes under low-velocity impact was studied. The specimen-1, Derakane 411-45 resin with less glass fiber, seemed to absorb more energy compared to the specimen-2, Derakane 470-36 resin with more glass fiber. In addition, the specimen-2 exhibited a slightly higher maximum impact force. Therefore, impact response is sensitive to fiber content.


Sign in / Sign up

Export Citation Format

Share Document