Function of Lymphocytes in Oligodendrocyte Development

2019 ◽  
Vol 26 (1) ◽  
pp. 74-86
Author(s):  
Shogo Tanabe ◽  
Toshihide Yamashita

Oligodendrocytes generate myelin sheaths to promote rapid neurotransmission in the central nervous system (CNS). During brain development, oligodendrocyte precursor cells (OPCs) are generated in the medial ganglionic eminence, lateral ganglionic eminence, and dorsal pallium. OPCs proliferate and migrate throughout the CNS at the embryonic stage. After birth, OPCs differentiate into mature oligodendrocytes, which then insulate axons. Oligodendrocyte development is regulated by the extrinsic environment including neurons, astrocytes, and immune cells. During brain development, B lymphocytes are present in the meningeal space, and are involved in oligodendrocyte development by promoting OPC proliferation. T lymphocytes mediate oligodendrocyte development during the remyelination process. Moreover, a subset of microglia contributes to oligodendrocyte development during the neonatal periods. Therefore, the immune system, especially lymphocytes and microglia, contribute to oligodendrocyte development during brain development and remyelination.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Khalil S. Rawji ◽  
V. Wee Yong

The central nervous system (CNS) is immune privileged with access to leukocytes being limited. In several neurological diseases, however, infiltration of immune cells from the periphery into the CNS is largely observed and accounts for the increased representation of macrophages within the CNS. In addition to extensive leukocyte infiltration, the activation of microglia is frequently observed. The functions of activated macrophages/microglia within the CNS are complex. In three animal models of multiple sclerosis (MS), namely, experimental autoimmune encephalomyelitis (EAE) and cuprizone- and lysolecithin-induced demyelination, there have been many reported detrimental roles associated with the involvement of macrophages and microglia. Such detriments include toxicity to neurons and oligodendrocyte precursor cells, release of proteases, release of inflammatory cytokines and free radicals, and recruitment and reactivation of T lymphocytes in the CNS. Many studies, however, have also reported beneficial roles of macrophages/microglia, including axon regenerative roles, assistance in promoting remyelination, clearance of inhibitory myelin debris, and the release of neurotrophic factors. This review will discuss the evidence supporting the detrimental and beneficial aspects of macrophages/microglia in models of MS, provide a discussion of the mechanisms underlying the dichotomous roles, and describe a few therapies in clinical use in MS that impinge on the activity of macrophages/microglia.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 503 ◽  
Author(s):  
Luca Lorenzini ◽  
Mercedes Fernandez ◽  
Vito Antonio Baldassarro ◽  
Andrea Bighinati ◽  
Alessandro Giuliani ◽  
...  

Myelin is the main component of the white matter of the central nervous system (CNS), allowing the proper electrical function of the neurons by ensheathing and insulating the axons. The extensive use of magnetic resonance imaging has highlighted the white matter alterations in Alzheimer’s dementia (AD) and other neurodegenerative diseases, alterations which are early, extended, and regionally selective. Given that the white matter turnover is considerable in the adulthood, and that myelin repair is currently recognized as being the only true reparative capability of the mature CNS, oligodendrocyte precursor cells (OPCs), the cells that differentiate in oligodendrocyte, responsible for myelin formation and repair, are regarded as a potential target for neuroprotection. In this review, several aspects of the OPC biology are reviewed. The histology and functional role of OPCs in the neurovascular-neuroglial unit as described in preclinical and clinical studies on AD is discussed, such as the OPC vulnerability to hypoxia-ischemia, neuroinflammation, and amyloid deposition. Finally, the position of OPCs in drug discovery strategies for dementia is discussed.


1997 ◽  
Vol 6 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Mia Emgard-Mattson ◽  
Jenny Karlsson ◽  
Naoyuki Nakao ◽  
Patrik Brundin

Addition of embryonic striatal tissue, usually as a combination of the lateral and medial ganglionic eminences, to intrastriatal mesencephalic grafts has previously been reported to enhance recovery of drug-induced rotational behavior in the host and to modify axonal fiber outgrowth from the grafted dopaminergic neurons. This study investigated the effects of adding (cografting) either lateral or medial ganglionic eminence tissue to embryonic mesencephalic grafts implanted intrastriatally, in rats with unilateral 6-hydroxydopamine lesions. The cografts did not exhibit increased survival or cell size of dopaminergic neurons when compared to transplants of mesencephalic tissue alone. Neither did recipients of cografts exhibit any enhancement of graft-induced recovery of function, when tested for drug-induced rotational behavior or forelimb function in the staircase test. However, cografts containing lateral ganglionic eminence displayed patches of dense tyrosine hydroxylase-immunoreactive fibers within the graft tissue. These patches largely coincided with patches in adjacent stained sections, which were rich in immunostaining for the striatal-specific marker dopamine- and cyclic AMP-regulated phosphoprotein-32 (DARPP-32). Such patches were not present in rats receiving cografts containing medial ganglionic eminence or mesencephalic tissue alone. Thus, it seems that the grafted dopaminergic neurons preferentially grow into the areas of the transplants containing lateral ganglionic eminence tissue. In summary, the results suggest that embryonic lateral ganglionic eminence exerts trophic effects on the outgrowth of dopaminergic axons, but does not enhance the behavioral effects of grafted dopaminergic neurons.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xin Zhou ◽  
Seula Shin ◽  
Chenxi He ◽  
Qiang Zhang ◽  
Matthew N Rasband ◽  
...  

Myelination depends on timely, precise control of oligodendrocyte differentiation and myelinogenesis. Cholesterol is the most abundant component of myelin and essential for myelin membrane assembly in the central nervous system. However, the underlying mechanisms of precise control of cholesterol biosynthesis in oligodendrocytes remain elusive. In the present study, we found that Qki depletion in neural stem cells or oligodendrocyte precursor cells in neonatal mice resulted in impaired cholesterol biosynthesis and defective myelinogenesis without compromising their differentiation into Aspa+Gstpi+ myelinating oligodendrocytes. Mechanistically, Qki-5 functions as a co-activator of Srebp2 to control transcription of the genes involved in cholesterol biosynthesis in oligodendrocytes. Consequently, Qki depletion led to substantially reduced concentration of the cholesterol in mouse brain, impairing proper myelin assembly. Our study demonstrated that Qki-Srebp2–controlled cholesterol biosynthesis is indispensable for myelinogenesis and highlights a novel function of Qki as a transcriptional co-activator beyond its canonical function as an RNA-binding protein.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Takanezawa ◽  
Shogo Tanabe ◽  
Daiki Kato ◽  
Rie Ozeki ◽  
Masayo Komoda ◽  
...  

AbstractAutism spectrum disorders (ASD) are associated with mutations of chromodomain-helicase DNA-binding protein 8 (Chd8) and tuberous sclerosis complex 2 (Tsc2). Although these ASD-related genes are detected in glial cells such as microglia, the effect of Chd8 or Tsc2 deficiency on microglial functions and microglia-mediated brain development remains unclear. In this study, we investigated the role of microglial Chd8 and Tsc2 in cytokine expression, phagocytosis activity, and neuro/gliogenesis from neural stem cells (NSCs) in vitro. Chd8 or Tsc2 knockdown in microglia reduced insulin-like growth factor-1(Igf1) expression under lipopolysaccharide (LPS) stimulation. In addition, phagocytosis activity was inhibited by Tsc2 deficiency, microglia-mediated oligodendrocyte development was inhibited, in particular, the differentiation of oligodendrocyte precursor cells to oligodendrocytes was prevented by Chd8 or Tsc2 deficiency. These results suggest that ASD-related gene expression in microglia is involved in oligodendrocyte differentiation, which may contribute to the white matter pathology relating to ASD.


2017 ◽  
Vol 23 (6) ◽  
pp. 627-648 ◽  
Author(s):  
Tianci Chu ◽  
Lisa B. E. Shields ◽  
Yi Ping Zhang ◽  
Shi-Qing Feng ◽  
Christopher B. Shields ◽  
...  

The chemokine CXCL12 plays a vital role in regulating the development of the central nervous system (CNS) by binding to its receptors CXCR4 and CXCR7. Recent studies reported that the CXCL12/CXCR4/CXCR7 axis regulates both embryonic and adult oligodendrocyte precursor cells (OPCs) in their proliferation, migration, and differentiation. The changes in the expression and distribution of CXCL12 and its receptors are tightly associated with the pathological process of demyelination in multiple sclerosis (MS), suggesting that modulating the CXCL12/CXCR4/CXCR7 axis may benefit myelin repair by enhancing OPC recruitment and differentiation. This review aims to integrate the current findings of the CXCL12/CXCR4/CXCR7 signaling pathway in the CNS and to highlight its role in oligodendrocyte development and demyelinating diseases. Furthermore, this review provides potential therapeutic strategies for myelin repair by analyzing the relevance between the pathological changes and the regulatory roles of CXCL12/CXCR4/CXCR7 during MS.


2021 ◽  
pp. 107385842098720
Author(s):  
Yasmine Kamen ◽  
Helena Pivonkova ◽  
Kimberley A. Evans ◽  
Ragnhildur T. Káradóttir

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes which myelinate axons in the central nervous system. Although classically thought to be a homogeneous population, OPCs are reported to have different developmental origins and display regional and temporal diversity in their transcriptome, response to growth factors, and physiological properties. Similarly, evidence is accumulating that myelinating oligodendrocytes display transcriptional heterogeneity. Analyzing this reported heterogeneity suggests that OPCs, and perhaps also myelinating oligodendrocytes, may exist in different functional cell states. Here, we review the evidence indicating that OPCs and oligodendrocytes are diverse, and we discuss the implications of functional OPC states for myelination in the adult brain and for myelin repair.


2021 ◽  
Vol 15 ◽  
Author(s):  
Morgan W. Psenicka ◽  
Brandon C. Smith ◽  
Rachel A. Tinkey ◽  
Jessica L. Williams

The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document