Resveratrol Attenuates Cardiomyocyte Apoptosis in Rats Induced by Coronary Microembolization Through SIRT1-Mediated Deacetylation of p53

2019 ◽  
Vol 24 (6) ◽  
pp. 551-558 ◽  
Author(s):  
Qing Mao ◽  
Xiulin Liang ◽  
Yufu Wu ◽  
Yongxiang Lu

Objective: Coronary microembolization (CME)-induced cardiomyocyte apoptosis is the primary factor in causing cardiac dysfunction. Resveratrol (RES) is known to play a protective role in a variety of cardiovascular diseases, yet it is not known whether RES has a protective role in CME. Therefore, the effect of RES on cardiomyocyte apoptosis and cardiac function damage which are induced by CME in rats was investigated in this study. Methods: Fifty Sprague-Dawley rats were separated into 5 groups randomly (10 rats were included in each): sham group, CME group, RES+CME group, RES+CME+Sirtuin-1 (SIRT-1) inhibitor EX527 (RES+CME+EX) group, and CME+EX group. Cardiac function, serum c-troponin I (cTnI) level, apoptotic index, and microinfarct were measured by cardiac ultrasound, myocardial enzyme assessment, TdT-mediated dUTP Nick-end labeling and hematoxylin-basic fuchsin-picric acid staining. The levels of p53, p53 acetylation, SIRT-1, Bax, Bcl-2, and cleaved caspase-3 were detected by Western blot. Results: Myocardial dysfunction, enhanced apoptotic index as well as cTnI were caused after the operation of CME. Coronary microembolization induced increased expression of p53 acetylation and cleaved caspase-3, while the SIRT-1 and Bcl-2/Bax ratio was reduced. The CME effect was reversed by RES while EX527 attenuated this protective effect. Conclusions: Resveratrol can improve cardiac function, in the sense that it attenuates CME-induced cardiomyocyte apoptosis, which is perhaps associated with its inhibition pro-apoptotic pathway of p53 which is transcription-independent.

2017 ◽  
Vol 41 (4) ◽  
pp. 1675-1683 ◽  
Author(s):  
Xian-tao Wang ◽  
Yuan-xi Lu ◽  
Yu-han Sun ◽  
Wen-kai He ◽  
Jia-bao Liang ◽  
...  

Background/Aims: Myocardial apoptosis is heavily implicated in the myocardial injury caused by coronary microembolization (CME), and toll-like receptor 4 (TLR4) is considered to be involved in this apoptotic cascade. Therefore, the present study was designed to investigate the role of TLR4/NF-κB signaling pathway regulated by TAK-242, a selective TLR4 signal transduction inhibitor, in the myocardial apoptosis after CME in rats. Methods: Forty-five rats were randomized (random number) into three groups: sham, CME and CME + TAK-242 (n = 15 per group).CME was induced by injecting polyethylene microspheres (42µm) into the left ventricular except the sham group. CME + TAK-242 group was treated with TAK-242 (2mg/kg) via the tail vein 30 minutes before CME modeling. Cardiac function was evaluated 6 hours after operation. Tissue biopsy was stained with HBFP to measure the size of micro-infarction area. TUNEL staining was used to detect myocardial apoptosis. Western blot and qPCR were used to evaluate the expression of TLR4, MyD88, NF-κB p65, p-IκBα and Cleaved caspase-3. Results: Cardiac function in the CME group and CME + TAK-242 group were significantly decreased compared with the sham group (P < 0.05) and the micro-infarction area, the apoptotic index, the expression of TLR4, NF-κB p65, p-IκBα and Cleaved caspase-3 were increased significantly (P < 0.05). Cardiac function in the CME + TAK-242 group was significantly improved compared with the CME group (P < 0.05) and the micro-infarction area, the apoptotic index, the expression of TLR4, MyD88, NF-κB p65, p-IκBα and Cleaved caspase-3 were decreased significantly (P < 0.05). Conclusions: TAK-242 can effectively improve CME-induced cardiac dysfunction by regulating TLR4/NF-κB signaling pathway and then reducing the myocardial apoptosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sireesh Kumar Teertam ◽  
Phanithi Prakash Babu

AbstractCerebral ischemia (CI) is a severe cause of neurological dysfunction and mortality. Sirtuin-1 (Silent information regulator family protein 1, SIRT1), an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, plays an important role in protection against several neurodegenerative disorders. The present study aims to investigate the protective role of SIRT1 after CI in experimental young and aged rats and humans. Also, the study examines the possible regulatory mechanisms of neuronal death in CI settings. Immunoblotting and immunohistochemistry were used to evaluate changes in the expression of SIRT1, JNK/ERK/MAPK/AKT signaling, and pro-apoptotic caspase-3 in experimental rats and CI patients. The study findings demonstrated that, in aged experimental rats, SIRT1 activation positively influenced JNK and ERK phosphorylation and modulated neuronal survival in AKT-dependent manner. Further, the protection conferred by SIRT1 was effectively reversed by JNK inhibition and increased pro-apoptotic caspase-3 expression. In young experimental rats, SIRT1 activation decreased the phosphorylation of stress-induced JNK, ERK, caspase-3, and increased the phosphorylation of AKT after CI. Inhibition of SIRT1 reversed the protective effect of resveratrol. More importantly, in human patients, SIRT1 expression, phosphorylation of JNK/ERK/MAPK/AKT signaling and caspase-3 were up-regulated. In conclusion, SIRT1 could possibly be involved in the modulation of JNK/ERK/MAPK/AKT signaling pathway in experimental rats and humans after CI.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dong Yang ◽  
Yanzhou Jiang ◽  
Haixia Qian ◽  
Xiaomin Liu ◽  
Liguo Mi

The aim of this study was to investigate the effect of cardiac troponin I-interacting kinase (TNNI3K) on sepsis-induced myocardial dysfunction (SIMD) and further explore the underlying molecular mechanisms. In this study, a lipopolysaccharide- (LPS-) induced myocardial injury model was used. qRT-PCR was performed to detect the mRNA expression of TNNI3K. Western blot was conducted to quantitatively detect the expression of TNNI3K and apoptosis-related proteins (Bcl-2, Bax, and caspase-3). ELISA was performed to detect the content of lactate dehydrogenase (LDH) and creatine kinase (CK). TUNEL assay was used to detect the apoptosis of H9C2 cells. In LPS-induced H9C2 cells, TNNI3K was up regulated. Besides, the CK activity, the content of LDH, and the apoptosis of H9C2 cells were significantly increased after treatment with LPS. Silencing TNNI3K decreased the LDH release activity and CK activity and inhibited apoptosis of H9C2 cell. Further research illustrated that si-TNNI3K promoted the protein expression of Bcl-2 and decreased the protein expression of Bax and cleaved caspase-3. The study concluded that TNNI3K was upregulated in LPS-induced H9C2 cells. Importantly, functional research findings indicated that silencing TNNI3K alleviated LPS-induced H9C2 cell injury by regulating apoptosis-related proteins.


2021 ◽  
Vol 7 (3) ◽  
pp. 1-5
Author(s):  
Xiaoyong Qi ◽  

Ginsenoside Rg2 inhibited the deterioration of cardiac function in rats, ginsenoside Rg2 inhibited cardiomyocyte apoptosis, increased the expression of Caspase-3,Caspase-9 and BAX in cell experiment. Conclusions: Ginsenoside Rg2 could protect cardiomyocytes in TZM-induced toxicity and it might be via inhibiting cell apoptosis.


2021 ◽  
Author(s):  
Yunke Tan ◽  
Kai Yu ◽  
Lian Liang ◽  
Yuanshan Liu ◽  
Fengqing Song ◽  
...  

Abstract Background: Sodium–glucose co-transporter 2 (SGLT2) inhibition reduces hyperglycaemia and has beneficial effects in heart failure. However, the effect of SGLT2 inhibition with empagliflozin on acute myocardial dysfunction after cardiac arrest (CA) remains unknown.Methods: Non-diabetic male Sprague–Dawley rats underwent ventricular fibrillation to induce CA, or sham surgery. Rats received 10 mg/kg of empagliflozin or vehicle at 10 minutes after return of spontaneous circulation by intraperitoneal injection. Cardiac function was assessed by echocardiography, histological analysis, molecular markers of myocardial injury, oxidative stress, mitochondrial ultrastructural integrity and metabolism. Results: Empagliflozin did not influence heart rate and blood pressure, but left ventricular function and survival time were significantly higher in the empagliflozin treated group compared to the group treated with vehicle. Empagliflozin also reduced myocardial contraction band necrosis, myocardial fibrosis, serum cardiac troponin I levels and myocardial oxidative stress after CA. Moreover, empagliflozin maintained the structural integrity of myocardial mitochondria and increased mitochondrial activity after CA. In addition, empagliflozin increased circulating and myocardial ketone levels as well as myocardial expression of the 𝛽-hydroxy butyrate dehydrogenase 1. Together these metabolic changes were associated with an increase in cardiac ATP production.Conclusions: Empagliflozin favorably affects cardiac function in non-diabetic rats with acute myocardial dysfunction after CA, associated with reducing glucose levels and increasing ketone body oxidized metabolism. Our data suggest that empagliflozin might be of benefit in patients with acute myocardial dysfunction after CA.


2020 ◽  
Author(s):  
Chenglei Su ◽  
Xinhui Fan ◽  
Feng Xu ◽  
Jiali Wang ◽  
Yuguo Chen

Abstract Background: Post-cardiac arrest myocardial dysfunction (PAMD) is a leading cause of death in resuscitated patients after cardiac arrest (CA). Prostaglandin E1 (PGE1) is a clinical drug used to mitigate ischemia injury. However, its effect on PAMD remains unknown. Methods: We investigated the protective effects of PGE1 on PAMD in a rat model of cardiac arrest and a hypoxia-reoxygenation (H/R) H9c2 cell model. Forty-two male Wistar rats were randomly assigned to CA, CA+PGE1, and sham groups. Asphyxia for 8 min followed by cardiopulmonary resuscitation was performed in the CA and CA+PGE1 groups. PGE1 (1 μg/kg) was intravenously administered at the onset of return of spontaneous circulation (ROSC). Ejection fraction (EF) and cardiac output (CO) were measured at baseline, 1, 2, 3, and 4 h after ROSC; survival was monitored for 72 h. Cardiomyocyte apoptosis, mitochondrial permeability transition pore (mPTP) opening, and protein levels of glycogen synthase kinase 3β (GSK3β), cytochrome c, and cleaved caspase-3 were measured 4 h after ROSC. H9c2 cells were treated with PGE1(0.5 μM) at the start of reoxygenation. Apoptosis, mPTP opening, and protein levels of GSK3β, cytochrome c, and cleaved caspase-3 of H9c2 cells were detected. Results: Compared to the CA group, PGE1 treatment significantly increased the EF and CO within 4 h after ROSC and improved the survival rate. It activated GSK3β, prevented mPTP opening, suppressed cytochrome c and cleaved caspase-3 expression, and reduced cardiomyocyte apoptosis in the rat model. In vitro, Changes in GSK3β, mPTP opening, cytochrome c and cleaved caspase-3 expression, and apoptosis in H9c2 cells were consistent with those in the rat model. Conclusions: Our results indicate that PGE1 attenuates PAMD via inhibiting mitochondria-mediated cardiomyocyte apoptosis.


2016 ◽  
Vol 22 (2) ◽  
pp. 189-195
Author(s):  
Jiang-You Wang ◽  
Han Chen ◽  
Xi Su ◽  
You Zhou ◽  
Lang Li

Background/Aim: In addition to its cholesterol-lowering effect, atorvastatin (ATV) has been thought to have multiple cardiovascular benefits, including anti-inflammatory and anti-apoptotic properties. The present study was undertaken to determine whether ATV pretreatment could attenuate myocardial apoptosis and inflammation and improve cardiac function in a swine model of coronary microembolization (CME). Methods: Twenty-four swine were randomly and equally divided into a sham-operated (control) group, CME group, and CME plus ATV group. Swine CME was induced by intracoronary injection of inert plastic microspheres (diameter 42 μm) into the left anterior descending coronary, with or without pretreatment of ATV. Echocardiographic measurements, a pathological examination, terminal deoxynucleotidyl transferase–mediated nick end labeling staining, and Western blotting were performed to assess the functional, morphological, and molecular effects in CME. Results: The expression levels of caspase 3 and tumor necrosis factor-α (TNF-α) were aberrantly upregulated in cardiomyocytes following CME. Downregulation of caspase 3 and TNF-α with ATV pretreatment was associated with improved cardiac function and attenuated serum cardiac troponin I (cTnI) and high-sensitivity C-reactive protein. In addition, through a Pearson correlation analysis, the left ventricular ejection fraction negatively correlated with caspase 3, TNF-α, and cTnI. Conclusion: This study demonstrated that ATV pretreatment could significantly inhibit CME-induced myocardial apoptosis and inflammation and improve cardiac function. The data generated from this study provide a rationale for the development of myocardial apoptosis and inflammation-based therapeutic strategies for CME-induced myocardial injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xue Han ◽  
Daili Chen ◽  
Ning Liufu ◽  
Fengtao Ji ◽  
Qingshi Zeng ◽  
...  

Background. The heart is one of the most commonly affected organs during sepsis. Mitsugumin-53 (MG53) has attracted attention in research due to its cardioprotective function. However, the role of MG53 in sepsis-induced myocardial dysfunction (SIMD) remains unknown. The purpose of this study was to explore the underlying mechanism of MG53 in SIMD and investigate its potential relationship with peroxisome proliferator-activated receptor-α (PPARα). Methods. The cecal ligation and puncture (CLP) model was created to induce SIMD in rats. Protein levels of MG53 and PPARα, cardiac function, cardiomyocyte injury, myocardial oxidative stress and inflammatory indicators, and cardiomyocyte apoptosis were measured at 18 h after CLP. The effects of MG53 on PPARα in SIMD were investigated via preconditioning recombinant human MG53 (rhMG53) and PPARα antagonist GW6471. Results. The expression of MG53 and PPARα sharply decreased in the myocardium at 18 h after CLP. Compared with the sham group, cardiac function was significantly depressed, which was associated with the destructed myocardium, upregulated oxidative stress indicators and proinflammatory cytokines, and excessive cardiomyocyte apoptosis in the CLP group. Supplementation with rhMG53 enhanced myocardial MG53, increased the survival rate with improved cardiac function, and reduced oxidative stress, inflammation, and myocardial apoptosis, which were associated with PPARα upregulation. Pretreatment with GW6471 abolished the abovementioned protective effects induced by MG53. Conclusions. Both MG53 and PPARα were downregulated after sepsis shock. MG53 supplement protects the heart against SIMD by upregulating PPARα expression. Our results provide a new treatment strategy for SIMD.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yanru He ◽  
Si Pang ◽  
Jia Huang ◽  
Kongbo Zhu ◽  
Jiayi Tong ◽  
...  

Background. Ischemic heart disease (IHD) is the major cause of death in patients with cardiovascular disease. Cardiac remodeling is a common pathological change following myocardial infarction (MI), and cardiomyocyte apoptosis plays a key role in this change. Transcription factor recombination signal-binding protein-J (RBP-J)-mediated Notch signaling pathway has been implicated in several inherited cardiovascular diseases, including aortic valve diseases, but whether the RBP-J-mediated Notch signaling pathway plays a role in cardiomyocyte apoptosis after MI is unclear. Method. We crossed RBP-Jfl/fl mice and Myh6-Cre/Esr1 transgenic mice to delete RBP-J in vivo and to partly inhibit the canonical Notch signaling pathway. MI was induced in mice by permanent ligation of the left anterior descending coronary artery followed by the knockout of RBP-J. Cardiac function and morphology were assessed by echocardiography and histological analysis 4 weeks after infarction. In addition, the expression and regulation of apoptosis-related molecules were examined by real time PCR and western blot. Results. RBP-J knockout decreased the survival rate and deteriorated post-MI remodeling and function in mice, and this effect was associated with increased cardiomyocyte apoptosis. The potential mechanisms might be related to the downregulated expression of bcl-2, upregulated expression of bax, and cleaved-caspase 3 to exacerbate cardiomyocyte apoptosis. Conclusion. These findings show that the RBP-J-mediated Notch signaling pathway in cardiomyocytes limits ventricular remodeling and improves cardiac function after MI. The RBP-J-mediated Notch signaling pathway has a protective role in cardiomyocyte apoptosis following cardiac injury.


Pharmacology ◽  
2019 ◽  
Vol 104 (1-2) ◽  
pp. 90-97 ◽  
Author(s):  
Qing Mao ◽  
Fenfen Guo ◽  
Xiulin Liang ◽  
Yufu Wu ◽  
Yongxiang Lu

Background: Coronary microembolisation (CME)-induced myocardial apoptosis is a key factor in progressive cardiac dysfunction. Aloperine (ALO) plays a protective role in the cardiovascular system, but its role and the mechanism ­underlying its protection against CME are unclear. Therefore, we aimed to verify whether ALO has a protective effect against CME-induced myocardial injury, as well as whether this effect has a relationship with regulation of the PI3K/Akt pathway for rats. Methods: Forty Sprague-Dawley rats were randomised into 4 equal groups: CME, CME + ALO, CME + ALO + LY294002 (LY) and a Sham group. Twelve hours after surgery, the rats’ cardiac function, apoptosis index, microinfarct and serum cardiac-troponin I (cTnI) level were measured. Levels of p-Akt, total Akt, Bcl-2, Bax and cleaved caspase-3 were detected. Results: ALO improved cardiac dysfunction induced by CME, while also decreasing serum levels of cTnI and microinfarct areas. In addition, ALO inhibited myocardial apoptosis, which may have been partially as a result of downregulated cleaved caspase-3 and Bax, upregulated Bcl-2 and increased protein levels in phosphorylated Akt. However, these ALO effects were blocked if ALO was administered along with LY. Conclusions: ALO can inhibit cardiomyocyte apoptosis and consequently attenuate CME-induced myocardial injury. These functions are realised by activating PI3K/Akt signalling pathway.


Sign in / Sign up

Export Citation Format

Share Document