Vibration source identification using an energy density method

2021 ◽  
pp. 107754632110399
Author(s):  
Chen Mao ◽  
Wai On Wong ◽  
Li Cheng

The localization of shaking forces acting on an operating machine is an important step to identify vibration and noise sources. The forced vibration response of a linearly vibrating structure is assumed to be linear. However, the energy distribution of a linearly vibrating structure contains “coupled terms” in the modal decomposition of the vibration energy density function. These coupled energy terms represent the cross-modal energy density associated with the exciting force of a dynamic structure under forced vibration. In this research, it is proved analytically that the high-order cross-modal energy densities of a linear dynamic structure are highly correlated to the location of the external exciting force. Using this finding, a new force localization index based on the high-order cross-modal energy densities of a dynamic structure is proposed and tested. Numerical tests on uniform and step beam structures under force excitation with different frequencies and locations have been carried out to test the effectiveness of the proposed force localization method. It is found that the proposed force localization method works well on vibrating beam structures. Experiments are carried out to verify the proposed force localization method.

Author(s):  
Shiyou Xu ◽  
Yong Shi

This paper presented the results of electromechanical characterization of PZT nanofibers through applied mechanical strain and forced vibration. PZT nanofibers were fabricated by electrospinning process. Titanium film with ZrO2 layer was used to collect the nanofibers and also used as the substrates of the test coupons for the bending tests. Mechanical strain was applied to the test coupons through three-point-bending using Dynamic Mechanical Analyzer (DMA). The largest output voltage was 170mV under 0.5% applied strain. Silicon substrate with trenches was also used to collect the PZT nanofibers for the forced vibration tests. The output voltage from 150Hz sinusoid vibration source was also measured. The peaks of the output voltage were 64.9mV and −95.9mV, respectively. These tests have demonstrated the piezoelectric response of PZT nanofibers. Further tests are to be conducted to precisely determine the piezoelectric constants of PZT nanofibers.


2020 ◽  
Vol 10 (23) ◽  
pp. 8671
Author(s):  
Yoo Kwang Kim ◽  
Won Jong Ryu ◽  
Jin Su Lee

The non-periodic pinhole array filtering of a spatial light modulator (SLM) is proposed for filtering the high-order noise and DC noise of a holographic display. Conventionally, DC and high-order noise sources are filtered by a 4f filtering system. Because the 4f filtering system requires a long optical path length, noise filtering is a stumbling block when attempting to realize a compact holographic display. By contrast, the proposed method simply uses a thin filter fabricated by photolithography. In order to verify this concept, we confirmed the feasibility of the filter with a numerical simulation and with a custom-made non-periodic pinhole array filter used in a practical experiment. The proposed method was shown to have the potential to be used in applications ranging from compact wearable devices to table-top holographic displays.


Author(s):  
Amanda S. Azman ◽  
David S. Yantek

Despite advances in engineering noise controls and the use of administrative controls, miners are still dependent on hearing protection devices for prevention of noise-induced hearing loss. However, miners often raise concerns about the audibility of spoken communication when wearing conventional hearing protectors. Electronic technologies that selectively process and restore sounds from outside of hearing protectors have been suggested as a partial remedy to the audibility problem. To assess the potential benefits of this technology for miners, NIOSH tested the impact of nine electronic sound restoration hearing protectors on speech intelligibility in selected mining background noises. Because of the number of devices and potential settings of those devices, it was necessary to narrow the choices before conducting human subject testing. This was done by testing the nine devices on an acoustic test fixture (ATF) to acquire one-third-octave-band data, and then calculating the speech intelligibility index (SII) to determine estimates of performance across device, noise and setting. The estimates of speech intelligibility obtained with the SII are highly correlated with the intelligibility of speech under adverse listening conditions such as noise, reverberation, and filtering. The results of fixture based testing indicate that performance varies little between most devices, with few showing exceptionally good or poor estimated speech intelligibility. The most significant differences in estimated performance using the devices were between the different noise sources used, regardless of device or setting. The findings of this research were used to select the devices and settings for subsequent human subject based speech intelligibility testing. The human subject testing results largely concurred with the findings from the acoustic test fixture testing and calculation of speech intelligibility index. Specifically, variations in background noise led to the greatest differences in speech intelligibility.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 269-280 ◽  
Author(s):  
Jin You ◽  
Hong-Guang Li ◽  
Guang Meng

The validity of the application of energy flow analysis for beam structures under random excitations is investigated in this paper. The approximate solutions of energy density and intensity in a beam subject to random loadings are obtained by solving the governing equation of random energy flow analysis using Fourier transform technique. The formulations of the exact energy density distribution and intensity in the beam are derived using the classical modal analysis method. For a simply supported beam subject to distributed or concentrated random excitations, the validity of random energy flow analysis is investigated through comparisons between solutions obtained from the approximate and exact methods for energy response as well as intensity. The results indicate that, the mode count of the analysis frequency band, which means the number of modes involved in the band, is the key factor affecting the prediction accuracy of random energy flow analysis, and that if the mode count of the band is sufficiently large, random energy flow analysis can provide rather accurate estimates for both energy density and intensity in a wide frequency range.


1985 ◽  
Vol 54 (23) ◽  
pp. 2481-2484 ◽  
Author(s):  
Carl M. Bender ◽  
Paul H. Burchard ◽  
Ashok Das ◽  
Hwa-Aun Lim ◽  
Joel A. Shapiro

Sign in / Sign up

Export Citation Format

Share Document