Electron Beam Irradiation Treatment of Cantaloupes: Effect on Product Quality

2004 ◽  
Vol 10 (6) ◽  
pp. 383-390 ◽  
Author(s):  
E. Castell-Perez ◽  
M. Moreno ◽  
O. Rodriguez ◽  
R. G. Moreira

Despite the impressive advances in electron beam irradiation, the technology is not ready for application to all types of fresh and/or minimally processed fruits and vegetables. The relationships between food product quality (nutrients, colour and texture) and irradiation dose are still needed. Cantaloupes ( Cucumis melo, L.) have become a product of interest due to the recent food-borne illness outbreaks related to their consumption in the United States and other countries. The main goal of this study was to verify whether treatment of cantaloupes using electron beam technology has any detrimental effects on the product quality. Whole and fresh-cut packaged cantaloupes were irradiated using a linear electron beam accelerator with the single beam (10MeV) fixture. Samples were stored at 10°C for zero, 4, 8 and 12 days along with control (non-irradiated) samples and tested for colour, texture (firmness), size (density), sugars and carotene content to determine the effect of irradiation dose level (1.0, 1.5 and 3.1kGy). Results indicated that irradiation of cantaloupes, as whole fruits with dose up to 1.0kGy, caused no significant changes on the fruit’s physical and nutritional quality attributes. Irradiating at higher doses had an undesirable effect on product quality. The fresh-cut packaged cantaloupe may be irradiated up to 1.5kGy without worsening the product quality attributes. In both cases, carotene content slightly increased as irradiation dose increased. In general, samples irradiated with dose levels between 1.0-1.5kGy had better quality attributes than the non-irradiated samples.

2003 ◽  
Vol 66 (7) ◽  
pp. 1241-1246 ◽  
Author(s):  
BALASUBRAHMANYAM KOTTAPALLI ◽  
CHARLENE E. WOLF-HALL ◽  
PAUL SCHWARZ ◽  
JURGEN SCHWARZ ◽  
JAMES GILLESPIE

The use of Fusarium-infected barley for malting may lead to mycotoxin production and decreased product quality. Physical methods for the treatment of Fusarium-infected barley may prevent these safety and quality defects and allow the use of otherwise good quality barley. Hot water and electron beam irradiation were evaluated for their effectiveness in reducing Fusarium infection while maintaining germinative energy in barley samples. Hot-water treatments involved temperatures of 45, 50, 55, and 60°C and treatment times of 0, 1, 5, 10, and 15 min. Electron beam irradiation involved doses ranging from 0 to 11.4 kGy. Treatment with water at 45°C for 15 min resulted in a reduction in Fusarium infection from 32 to 1% after 15 min, with only a very slight reduction in germination. Treatment with water at 50°C for 1 min resulted in a reduction in Fusarium infection from 32 to 2%, and no effect on germination was observed for up to 5 min of treatment. At higher water temperatures, Fusarium infection was essentially eliminated, but germination was also severely reduced. Electron beam irradiation of Fusarium-infected barley reduced Fusarium infection at doses of >4 kGy, and a slight increase in germination for dry samples was observed with doses of 6 to 8 kGy. Doses of >10 kGy significantly decreased germination. Physical methods may have potential for the treatment of Fusarium-infected malting barley.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2431
Author(s):  
Elena Manaila ◽  
Anton Airinei ◽  
Maria Daniela Stelescu ◽  
Maria Sonmez ◽  
Laurentia Alexandrescu ◽  
...  

Composites based on ethylene–propylene–diene terpolymer (EPDM), butyl/halobutyl rubber and nanosilica were prepared by melt mixing and subjected to different doses of electron beam irradiation. The effect of irradiation dose on the mechanical properties, morphology, glass transition temperature, thermal stability and water uptake was investigated. The efficiency of the crosslinking by electron beam irradiation was analyzed by Charlesby–Pinner parameter evaluation and crosslink density measurements. The scanning electron microscopy data showed a good dispersion of nanosilica in the rubber matrix. An improvement in hardness and 100% modulus was revealed by increasing irradiation dose up to 150 kGy. The interaction between polymer matrix and nanosilica was analyzed using the Kraus equation. Additionally, these results indicated that the mechanical properties, surface characteristics, and water uptake were dependent on crosslink characteristics.


Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 679-682 ◽  
Author(s):  
Magdalena Ptaszek ◽  
Leszek B. Orlikowski ◽  
Wojciech Migdał ◽  
Urszula Gryczka

Abstract Effectiveness of electron beam irradiation was evaluated against Phytophthora nicotianae var. nicotianae, the causal agent of stem base and root rot of tomato. In laboratory trials, irradiation of 7-day-old Phytophthora cultures growing on potato-dextrose-agar (PDA) medium with 1 kGy resulted in the disintegration of the pathogen’s hyphae. Increasing the irradiation dose to 3 kGy caused decay of the hyphae. Irradiation of infested stonewool with 5 kGy caused decrease of the pathogen population about 5 times. Application of 20 kGy completely eliminated the pathogen from stonewool. Irradiation of substratum resulted in significant increase of tomato seedlings healthiness, especially when the dose 20 kGy was applied.


2013 ◽  
Vol 770 ◽  
pp. 370-373 ◽  
Author(s):  
Pannipa Noithong ◽  
Panee Pakkong ◽  
Kittisakchai Naemchanthara

Study on the electron beam irradiation color change induction of spodumene (LiAlSi2O6) samples, which color exhibit green, pink and colorless. Characteristic the electron-beam irradiation dose were selected 30,000 kGy, 40,000 kGy and 50,000 kGy. The color and fading of spodumene samples were analyzed by UV-VIS spectrophotometer , crystal structure were determined by X-ray diffraction (XRD) spectrometer, free radical species of impurities were determined by Electron Spin Resonance (ESR) spectrometer before and after irradiation. The results revealed the color of spodumene samples changed after irradiation, from green spodumene became a little darker color, pink spodumene became green color, colorless spodumene became pink to purple color the results of the color analysis and fading displayed on the CIE L* a* b* color system, color change spodumene samples were determined by values changed of a* and b*. Color fade of spodumene were determined by values changed of L*. The results of all samples crystal structure analysis were shown on the XRD patterns of the JCPDS No. 89-6662 (Spodumene) with monoclinic structure. The radical analysis results of impurity elements, green and pink only appear the ESR pattern of manganese (Mn2+), and chromium (Cr3+), respectively. It can be conclusion that intensity of color change depend on the irradiation dose and impurity elements in spodumene samples.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1206 ◽  
Author(s):  
Maria Stelescu ◽  
Anton Airinei ◽  
Elena Manaila ◽  
Gabriela Craciun ◽  
Nicusor Fifere ◽  
...  

The effects of electron beam irradiation on the properties of ethylene propylene diene monomer (EPDM)/butyl rubber composites in presence of a polyfunctional monomer were investigated by means of differential scanning calorimetry (DSC), thermal analysis, scanning electron microscopy (SEM), attenuated total reflection absorption infrared spectroscopy (ATR-IR), and mechanical and surface energy measurements. The samples were exposed over a wide range of irradiation doses (20–150 kGy). The EPDM matrix was modified with butyl rubber, chlorobutyl rubber, and bromobutyl rubber. The gel content and crosslink density were found to increase with the electron beam irradiation dose. The values of the hardness and modulus increased gradually with the irradiation dose, while the tensile strength and elongation at break decreased with increasing irradiation dose. The EPDM/butyl rubber composites presented a higher thermal stability compared to the initial EPDM sample. The incorporation of butyl rubbers into the EPDM matrix led to an increase in material hydrophobicity. A similar trend was observed when the irradiation dose increased. The greatest change in the surface free energy and the contact angles occurs at an irradiation dose of 20 kGy. The Charlesby–Pinner plots prove the tendency to crosslinking as the irradiation dose increases.


2013 ◽  
Vol 848 ◽  
pp. 191-194
Author(s):  
Yan Jiang ◽  
Nai Yan Wang ◽  
Jian Wei Huang ◽  
Tao Hu ◽  
Ming Xin Zhang ◽  
...  

Recently 4-Chlorinatedphenol has been paid great concerns because of their persistency and extreme toxicity in the environment. The recent progresses on irradiation degradation of 4-Chlorinatedphenol is reviewed mainly in the paper.Got the irradiation technology joint approach to treat biological sewage is the most effective way. Polymer of refractory organic matter degradation by joint methods are efficient, the main problems existing in current sewage treatment by this method can simultaneously be solved. Keywords: Electron-beam irradiation; Biological treatment; Irradiation dose; Joint method


2021 ◽  
Vol 6 (2) ◽  
pp. 47-51
Author(s):  
Thi Ly Nguyen ◽  
Thi The Doan ◽  
Kim Lang Vo Thi ◽  
Van Chung Cao

Utilization of phytosanitary irradiation as a potential treatment to disinfest agricultural commodities in trade has expanded rapidly in the recent years. In this study, red mites (Tetranychus sp) isolated from cut Chrysanthemums were treated by electron beam irradiation at doses of 100, 200, 300 and 400 Gy. After irradiation, they were kept at room temperature to determine the effects of electron beam irradiation on red mite at different developmental stages (eggs, nymphs and adults) and the reproduction of female adults. The results showed that the pattern of tolerance to irradiation in red mite was eggs < 2nd instars < adults, in which the adults were the most tolerance stage. The number of eggs laid by the irradiated female mites and the hatching rate significantly decreased when the irradiation dose increased. The hatching rate of eggs at 300 Gy was 4.25% and no larvae F1 survived during observation time. It could be concluded that 300 Gy is the effective quarantine dose for red mite infesting on cut chrysanthemums.


Sign in / Sign up

Export Citation Format

Share Document