Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose

2021 ◽  
pp. 108201322110206
Author(s):  
Jacqueline Agudelo-Chaparro ◽  
Héctor J Ciro-Velásquez ◽  
José U Sepúlveda-Valencia ◽  
Ezequiel José Pérez-Monterroza

This study aimed to microencapsulate Lactobacillus rhamnosus ( L. rhamnosus) ATCC 7469 with whey protein concentrate (WPC), maltodextrin and trehalose by spray drying and to assess the impact of microencapsulation on cell viability and the properties of the dried powders. Spray-drying conditions, including inlet air temperature, air flow rate and feed pump, were fixed as independent variables, while probiotic survival, moisture content, water activity and effective yield were established as dependent variables. The survival of encapsulated L. rhamnosus by spray drying was optimized with response surface methodology, and the stability of the powder was assessed. The optimum spray-drying conditions were an inlet air temperature, air flow rate and feed pump rate of 169 °C, 33 m3·h−1 and 16 mL·min−1, respectively, survival of 70%, air aspiration of 84% and outlet air temperature of 52 °C, achieving an overall desirability of 0.96. The physicochemical and structural characteristics of the produced powder were acceptable for application with regard to residual water content, hygroscopicity, water activity, and particle size. The results indicated that a protein-trehalose-maltodextrin mixture is a good wall material to encapsulate L. rhamnosus, showing important thermal protection during the drying process and increasing survival. However, a decrease in this capacity is observed at an air outlet temperature of approximately 101 °C. The possible effects of the wall materials and the drying conditions on survival are also discussed.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jiseon Park ◽  
Soon Bae Kwon ◽  
Hye Jeong Kwon

Abstract Objectives The purpose of this study was to investigate optimization of spray drying conditions for water-soluble powder using response surface methodology that is a statistical procedure used for optimization studies. Methods First, conditions of the extract used for spray drying were set. We compared heat water extraction (60–100 °C) with ethanol extraction (10–50%). After final selection of the method of extract used for spray drying, spray drying conditions were set. Independent variables included the additive contents of maltodextrin (X1), inlet temperature (X2), and air flow rate (X3). The dependent variables were yield, water absorption index (WAI) and total phenolic compounds. Results The yield was highest in 100 °C heat water extraction. The content of rutin was 29.77 mg/100 g in 90 °C heat water extraction, 28.07 mg/100 g in 100 °C heat water extraction and 24.24 mg/100 g in 10% ethanol extraction. The heat water extraction method at 100 °C was selected as an extract of the spray dryer. Statistical analysis revealed that independent variables significantly affected all the responses. A maximum yield was obtained at 15.55% of X1, 167.87 °C of X2 and 50.00 mL/min of X3. The water absorption index of asparagus increased with increasing MD ratio (X1), higher inlet temperature (X2) and higher air flow rate (X3). The total polyphenol contents of asparagus were higher when the MD addition ratio (X1) was 16.56%, the inlet temperature (X2) was higher and the air flow rate (X3) was higher. Conclusions In this study, extracts of asparagus using different extraction methods were compared for yield and spray-dried asparagus powders were investigated for their physicochemical characteristics. We were vary the range of the temperature, air flow rate, dextrin rate and set the best method for the functionality content of asparagus. Asparagus was spray - dried using 100 °C water extraction with high yield and high rutin content. The maximum spray drying yield was obtained at 15.55% of MD ratio, 167.87 °C of inlet temperature and 50.00 mL/min of air flow rate. There will be additional processed goods development made with what we have found. Funding Sources This study was supported by 2018 Regional Specialized Technology Development Project, Rural Development Administration, Republic of Korea. Supporting Tables, Images and/or Graphs


LWT ◽  
2014 ◽  
Vol 58 (1) ◽  
pp. 109-115 ◽  
Author(s):  
J. Osorio ◽  
J. Monjes ◽  
M. Pinto ◽  
C. Ramírez ◽  
R. Simpson ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 2407-2416
Author(s):  
Nguyen Phuoc Minh

Roselle (Hibiscus sabdariffa) was a member of Malvaceae family. Its calyxes had bright red color due to presence of anthocyanin with an excellent antioxidant property. Raw roselle (Hibiscus sabdariffa L.) calyx was highly perishable due to its high moisture content. In order to diversify products from this plant, this research evaluated the possibility of spray drying for roselle extract into dried powder for long-term consumption. We focused on the effect of sugar alcohols (mannitol, sorbitol, isomalt, xylitol, erythritol) at 8%, carrier agents (maltodextrin, gum arabic, glutinous starch, whey protein concentrate, carboxymethyl cellulose) at 12%, operating parameters of spray dryer (inlet/outlet air temperature, feed rate) on physicochemical quality (bulk density, solubility, total phenolic content, total flavonoid content, anthocyanin content) of rosselle powder. Results showed that the optimal spray drying variables for rosselle powder should be 8% isomalt, 12% whey protein concentrate, inlet/ outlet air temperature 140/85oC/oC, feed rate 12 ml/min. Based on these optimal conditions, the highest physicochemical attributes of the dried roselle calyx powder would be obtained.


2017 ◽  
Vol 728 ◽  
pp. 341-346 ◽  
Author(s):  
Weeranuch Sukaraseranee ◽  
Sukasem Watcharamaisakul ◽  
Boris Golman ◽  
Jintamai Suwanprateeb

The effects of drying air temperature and flow rate, spraying air flow rate and slurry feed rate were investigated on the morphology, size distribution, density and flowability of spray-dried hydroxyapatite granules. The granules were of good spherical shape and smooth surface, but low flowability. The granules of uniform size distribution were obtained at high spraying air flow rate and granules of small sizes were collected at high spraying and drying air flow rates, high slurry feed rate and low drying air temperature. Thus, by adjusting the spray drying conditions we can control the granule properties.


2021 ◽  
Vol 12 (4) ◽  
pp. 4920-4928

Spray drying is a well-known method for preparing dried extracts from herbs. Rehmannia glutinosa root and Coix lachryma-jobi trunk are widely researched especially for diabetes treatment. The optimization of extraction conditions, namely the alcohol concentration, treated herbs and solvent ratio, extraction temperature, and time. The extracts are dried by Labplant machine with two specifications (drying inlet air temperature and flow- rate). Rehmannia glutinosa root is extracted by refluxing method for 60 minutes with 40% alcohol, the ratio of treated herbs and solvent was 1:3, at 800C by three times extract and its dried extract is prepared at a drying inlet air temperature of 90oC, 8 cycles per minute. Coix lachryma-jobi trunk is also extracted by the same method for 60 minutes with 80% alcohol, the ratio of treated herbs and solvent was 1:6, extraction temperature and time are respective 80oC and two times, spray drying conditions were 80oC (drying inlet air temperature) and 4 cycles per minute (flow- rate). The obtained dried extracts of Rehmannia glutinosa root and Coix lachryma-jobi trunk have average moisture contents of 4.52% and 3.84%, respectively. Therefore, this study is a novel approach to significantly decreasing the amount of carriers to reduce research's funds and saving dried extracts' price.


2018 ◽  
Vol 48 (2) ◽  
pp. 95-100
Author(s):  
A. SALIMI ◽  
Y. MAGHSOUDLOU ◽  
S. M. JAFARI

 In this investigation, four biopolymers were mixed with Maltodextrin (MDX) and used as emulsion stabilizers and wall materials to encapsulate lycopene natural pigment. These biopolymers were whey protein concentrate (WPC), soy protein concentrate (SPC), Gelatin (GEL) and Arabic Gum (AG). Some parameters such as droplet size, viscosity and creaming index of emulsions were investigated and then, to produce lycopene microcapsules, emulsions were transferred to spray dryer to be dried. Inlet air temperature (150 and 200 °C) and pressure of nozzle (1 and 2 bar) were considered as drying variables. Results showed that WPC emulsions had the smallest droplet size and lowest viscosity among other samples. The highest Encapsulation Efficiency (EE) belonged to WPC emulsions which were dried at 150 °C and 2 bar, also these samples had the highest bulk density. Results showed that samples which were atomized by using 2bar pressure at nozzle during spray drying, needed a significant longer time to be rehydrated (P<0.05).


2011 ◽  
pp. 15-29
Author(s):  
Mohd Azizi Che Yunus ◽  
Ching Yaw Lee ◽  
Zuhaili Idham

Teknik reka bentuk komposit pusat dalam kaedah gerak balas permukaan (RSM), telah dipilih untuk memeriksa pengaruh parameter-parameter pengeringan sembur terhadap kandungan lembapan dan ketumpatan pukal serbuk buah naga. Pemboleh ubah-pemboleh ubah tak bersandar dengan julat seperti yang disebutkan telah diuji kaji: suhu masukan (156-224°C), kadar aliran suapan (16.6-33.4 ml/min) dan kepekatan maltodextrin (31.6-48.4%). Keputusan menunjukkan bahawa data eksperimen dapat diwakili oleh bentuk polinomial tertib kedua. Bagaimanapun, hanya istilah linear mempunyai pengaruh mutlak terhadap keadaan serbuk. Parameter-parameter terbaik untuk mencapai nilai kandungan lembapan terendah adalah suhu masukan 224°C, kadar aliran suapan 22.9 ml/min dan kepekatan maltodextrin 40%, dengan jangkaan 3.88% kandungan lembapan. Nilai ketumpatan pukal yang maksimum iaitu 0.45 g/ml dicapai pada suhu masukan 156°C, kadar aliran suapan 16.6 ml/min dan kepekatan maltodextrin 48.4%. Kata kunci: Kaedah gerak balas permukaan; sembur kering; buah naga Central Composite Design technique from Response Surface Methodology (RSM) was used to investigate the effects of spray drying conditions on red-fleshed pitaya powder moisture content and bulk density. The spray drying independent variables and ranges are inlet air temperature (156-224°C), feed flow rate (16.6-33.4 ml/min) and maltodextrin concentration (31.6-48.4 %). Results showed that the data were adequately fitted to second order polynomial model. However, only linear terms proved to be significant for powder attributes. The best spray drying conditions within the experimental ranges for minimum powder moisture content of 3.88% would be inlet air temperature, feed flow rate and maltodextrin concentration of 224°C, 22.9 ml/min and 40% respectively. The maximum powder bulk density of 0.45 g/ml was obtained at inlet air temperature of 156°C, 16.6 ml/min feed flow rate and 48.4% maltodextrin concentration. Key words: Response surface methodology; spray-drying; red-fleshed pitaya


Author(s):  
Aree Achariyaviriya ◽  
Paradorn Nuthong

In this work, it is presented a study of the effects of drying conditions on the optimal bed thickness of the whole longan. The criteria for evaluation of the drying process are specific energy consumption and drying time which the difference of moisture between top and bottom of drying chamber is less than 10%dry basis. The mathematical model is developed for finding the effects of the drying conditions on the optimal bed thickness. The drying conditions are drying air temperature, specific air flow rate, and fraction of recycled air. Experimental data were compared with the simulated results to verify the model. Furthermore, the sensitivity analysis of the fraction of air recycled, drying air temperature, specific airflow rate, initial moisture content, and bed thickness of longan are study. The results showed that there was good agreement between the simulated drying rate and those experimentally observed. In addition, there was a well agreement with respect to the shapes of the drying air temperature and product temperature profiles. From the simulated results, the optimal bed thickness of 40 cm, the specific energy consumption of 10.56 MJ/kg-water and drying time of 64.2 h were found. The responsive conditions were drying air temperature of 75°C, the fraction of recycled air of 90%, and the specific air flow rate of 73 kg-dry air/h-kg dry longan.


Sign in / Sign up

Export Citation Format

Share Document