Physical, morphological and storage stability of Clove oil nanoemulsion based delivery system

2021 ◽  
pp. 108201322110694
Author(s):  
Prastuty Singh ◽  
Gurkirat Kaur ◽  
Arashdeep Singh

Clove oil based Nanoemulsions (NE) were prepared ultrasonically using Tween 80 and soy lecithin as synthetic and natural surfactants, respectively. The developed NEs were characterized for various parameters (particle size, polydispersity index, zeta potential, morphology, viscosity, colour, turbidity and pH) and the comparative effect of both the surfactants at variable levels (oil:tween 80-1:1, 1:2, 1:3 and 1:4 and oil: soy lecithin- 1:1, 1:1.5 and 1:2) was assessed. It was found that the type of surfactant and oil to surfactant ratio significantly affected particle size and stability of NEs. The NE prepared using tween 80 @1:3 had smallest average droplet diameter (40.9 nm). The formulated NEs were stored at 25 °C and 4 °C and analyzed for turbidity, pH and phase separation up to 90 days. Results revealed that the type and concentration of the surfactant significantly influenced the particle size and stability of NEs. NEs prepared using tween 80 were found to be more viscous than those prepared with soy lecithin. The prepared clove oil NEs have important implication to be used as a natural delivery system to increase the shelf life of food products.

2020 ◽  
Vol 11 (2) ◽  
pp. 1294-1301
Author(s):  
Geethanjali K ◽  
Vaiyana Rajesh C

The present study was aimed to develop a Self Nano Emulsifying Delivery System of Ezetimibe (EZM) for enhancing its dissolution rate. Ezetimibe is a cholesterol absorption inhibitor, being a lipophilic drug due to its low solubility EZM shows a low dissolution profile. The SNEDDS formulation consisted of excipients Cinnamon oil, Tween 80, PEG 400 as the Oil, Surfactant and Co-surfactant. Twelve formulations with different ratios of Oil, Surfactant and Co-surfactant were prepared. The liquid SNEDDS were then converted into Solid form by adsorption technique using Avicel PH 101 and Aerosil 200 as adsorbents. The liquid SNEDDS was characterised for Particle size, Emulsification time, Dispersibility, percentage transmittance, PCM, Centrifugation, Cloud Point and Freeze thaw cycle. The solid form was characterized for the flow property, SEM, Drug content and in-vitro dissolution. Among the twelve formulations F6 formulation was found to have a particle size of 196 nm and PDI of 0.123. F6 formulation was selected as the best and it was made into solid by adsorption onto solid carriers. The F6 formulation consisted of the 25% Cinnamon oil, 50% tween 80 and 25% PEG 400. The in-vitro dissolution rate of the prepared formulation was compared with the marketed formulation. The in-vitro dissolution data showed that the drug release at the end of 60 mins from marketed formulation was 63.75 % and from SNEDDS formulation was         90.62 %. The dissolution rate of the prepared SNEDDS was increased by 1.42 times than the marketed formulation. The increase in the dissolution rate shows that SNEDDS is a suitable drug delivery system to enhance the rate of dissolution of Ezetimibe.


2004 ◽  
Vol 91 (6) ◽  
pp. 3455-3461 ◽  
Author(s):  
Charoen Chinwanitcharoen ◽  
Shigeyoshi Kanoh ◽  
Toshiro Yamada ◽  
Shunichi Hayashi ◽  
Shunji Sugano

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2328
Author(s):  
Xia Gao ◽  
Xiangzhou Yi ◽  
Zhongyuan Liu ◽  
Xiuping Dong ◽  
Guanghua Xia ◽  
...  

In this study, we compared the characteristics and in vitro anti-inflammatory effects of two curcumin liposomes, prepared with golden pompano head phospholipids (GPL) and soybean lecithin (SPC). GPL liposomes (GPL-lipo) and SPC liposomes (SPC-lipo) loaded with curcumin (CUR) were prepared by thin film extrusion, and the differences in particle size, ζ-potential, morphology, and storage stability were investigated. The results show that GPL-lipo and SPC-lipo were monolayer liposomes with a relatively small particle size and excellent encapsulation rates. However, GPL-lipo displayed a larger negative ζ-potential and better storage stability compared to SPC-lipo. Subsequently, the effects of phospholipids in regulating the inflammatory response of macrophages were evaluated in vitro, based on the synergistic effect with CUR. The results showed that both GPL and SPC exerted excellent synergistic effect with CUR in inhibiting the lipopolysaccharide (LPS)-induced secretion of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory genes (tumor necrosis factor (TNF)-α, interleukin 1β (IL-β), and interleukin 6 (IL-6)) in RAW264.7 cells. Interestingly, GPL-lipo displayed superior inhibitory effects, compared to SPC-lipo. The findings provide a new innovative bioactive carrier for development of stable CUR liposomes with good functional properties.


2021 ◽  
Vol 33 (9) ◽  
pp. 2182-2190
Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra ◽  
Rajat Kumar Kar

This study was planned to increase the intestinal permeability and thereby bioavailability of eprosartan mesylate (EPM) by designing a self-microemulsifying drug delivery system (SMEDDS) by the use of vegetable oils. Various SMEDDS-based formulations were prepared with oleic acid and peppermint oil. Tween 80 was used as surfactant and PEG 400 as co-surfactant. Pseudo ternary phase diagrams were constructed for identifying emulsification region between 1:1, 1:2, 2:1, 3:1 ratio of SCOS mix. Eight batches of SMEDDS were found to be thermodynamically stable and from which SMEDDSOF9 and PF5 were best formulations due to their highest drug content, minimum particle size. They have shown highest release of drug in vitro and higher in vitro drug diffusion and ex vivo permeation analysis than pure drug. FTIR study ascertained no incompatibility between drug and excipients present in formulation. From the accelerated stability study, slight effect on particle size and zeta potential, assay content along with cumulative % of drug release was found. The results demonstrated the SMEDDS of EPM are potent drug delivery system to increase dissolution rate and bioavailability of drug via increased intestinal permeability and consequently improving the therapeutic efficacy of eprosartan mesylate.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Miftakhur Rohmah ◽  
Sri Raharjo ◽  
Chusnul Hidayat ◽  
Ronny Martien

Nanostructured Lipid Carriers (NLC) adalah sistem pembawa berbasis lipida yang menggunakan kombinasi matriks berupa lipid padat dan cair yang distabilkan dengan penambahan surfaktan. NLC ini dikembangkan untuk memfasilitasi dispersi senyawa bioaktif hidrofobik dalam sistem hidrofilik.  Penelitian ini bertujuan untuk mendapatkan formulasi yang tepat untuk menghasilkan dan mengevaluasi stabilitas NLC yang menggunakan fraksi stearin dan fraksi olein minyak kelapa sawit sebagai lipid padat dan cair serta penambahan surfaktan Tween 80. Tahap pertama penelitian ini adalah membuat formula NLC dengan menggunakan metode High Shear Homogenisasi dan Ultrasonication dengan rasio lipid padat:lipid cair adalah 5:5 sd. 9:1% b/b, rasio lipid:surfaktan sebesar 1:3 sd. 1:5% b/b, dan rasio lipid + surfaktan/air adalah 65, 70, 80 dan 85% b/b. Tahap kedua adalah pengujian stabilitas NLC terhadap sentrifugasi, pemanasan pendinginan, dan penyimpanan pada suhu ruang selama 30 hari. Tahap ketiga yaitu karakterisasi NLC stabil meliputi nilai pH, vikositas, ukuran partikel, indeks polidispersi (PDI), potensial zeta (ZP) dan morfologi NLC. Hasil penelitian menunjukkan NLC stabil pada rasio lipid padat:lipid cair sebesar 5:5 sd. 9:1, rasio lipid:surfaktan adalah 1:4 sd.1:5, rasio lipid + surfaktan/air sebesar 65, 70, 75 dan 80%, pH pada kisaran 6,28±0,15 sd. 6,44±0,11, viskositas sebesar 18,17±0,29 sd. 26,83±1,61 cP, ukuran partikel sebesar 164,3±6,6 s.d. 340±2,0 nm, PDI sebesar 0,20±0,01 sd. 0,53±0,01, ZP sebesar (-21,25±0,01) sd. (-33,70±0,44) mV, dan memiliki morfologi bulat. Kesimpulannya, informasi tentang formulasi dan stabilitas NLC sebagai sistem pembawa senyawa bioaktif hidrophobik dapat digambarkan dengan baik. Formulation and Stability of Nanostructured Lipid Carrier Prepared from a Mixture of Palm Stearin and Palm OleinAbstractNanostructured Lipid Carriers (NLC) is a lipid-based delivery system using a matrix of solid and liquid lipids stabilized with surfactants, developed to facilitate the dispersion of hydrophobic bioactive compounds in hydrophilic systems. This study aimed to evaluate the formulation and stability of the NLC delivery system produced using palm stearin and palm olein as solid and liquid lipids as well as Tween 80 surfactant. As initial research, NLC formulations was done using the High Shear Homogenization and Ultrasonication using the ratio of solid:liquid lipids of 5:5 to 9:1% w/w, ratio lipid:surfactant as much as 1:3 to 1:5% w/w, and lipid+surfactant/water as much as 65, 70, 80 and 85% w/w. The second stage was testing the NLC stability against centrifugation, cooling, heating, and storage at room temperature for up to 30 days. The third stage was characterization of stable NLC i.e. pH, viscosity, particle size, polydispersion index (PDI), potential zeta (ZP), and NLC morphology. The results showed stable NLC at the ratio of solid:liquid lipids as much as 5:5 to 9:1, ratio of lipid:surfactant was 1:4 to 1:5, ratio of lipid+surfactant/water was 65, 70, 75 and 80%, pH value was 6.28±0.15 to 6.44±0.11, viscosity 18.17±0.29 to 26.83±1.61 cP, particle size was 164.3±6.6 to 340±2.0 nm, PDI was 0.20±0.01 to 0.53±0.01, ZP (-21.25±0.01) to (-33.70±0.44) mV, and had spherical morphology. As conclusion, the design of NLC as a delivery system for bioactive compounds was presented succesfully.


2019 ◽  
Vol 9 (4) ◽  
pp. 609-618 ◽  
Author(s):  
Ilham Kuncahyo ◽  
Syaiful Choiri ◽  
Achmad Fudholi ◽  
Ronny Martien ◽  
Abdul Rohman

Purpose: Recently, a self-nanoemulsifying drug delivery system (SNEDDS) has showngreat improvement in the enhancement of drug bioavailability. The selection of appropriatecompositions in the SNEDDS formulation is the fundamental step towards developing asuccessful formulation. This study sought to evaluate the effectiveness of fractional factorialdesign (FFD) in the selection and screening of a SNEDDS composition. Furthermore, the mostefficient FFD approach would be applied to the selection of SNEDDS components.Methods: The types of oil, surfactant, co-surfactant, and their concentrations were selected asfactors. 26 full factorial design (FD) (64 runs), 26-1 FFD (32 runs), 26-2 FFD (16 runs), and 26-3 FFD(8 runs) were compared to the main effect contributions of each design. Ca-pitavastatin (Ca-PVT)was used as a drug model. Screening parameters, such as transmittance, emulsification time,and drug load, were selected as responses followed by particle size along with zeta potentialfor optimized formulation.Results: The results indicated that the patterns of 26 full FD and 26-1 for both main effects andinteractions were similar. 26-3 FFD lacked adequate precision when used for screening owing tothe limitation of design points. In addition, capryol, Tween 80, and transcutol P were selected tobe developed in a SNEDDS formulation with a particle size of 69.7 ± 5.3 nm along with a zetapotential of 33.4 ± 2.1 mV.Conclusion: Herein, 26-2 FFD was chosen as the most efficient and adequate design for theselection and screening of SNEDDS composition. The optimized formulation fulfilled therequirement of a quality target profile of a nanoemulsion.<br />


2020 ◽  
Vol 25 (2) ◽  
pp. 81
Author(s):  
Anif Nur Artanti ◽  
Fea Prihapsara ◽  
Dian Eka Ermawati ◽  
Aprilia Saefanan Shofa

Soursop leaf chloroform extract has anticancer activity.  The active ingredient of soursop leaf was acetogenin polypoid derivatives that have a lipophilic characteristic, and less effective to achieve action targets of drugs in biological systems. The Self-Micro Emulsifying Drug Delivery System (SMEDDS) was an effective drug delivery technique that increases the solubility of lipophilic drugs. This study aims to determine the proportion of optimum SMEDDS formula using Simplex Lattice Design (SLD) method. The Formula of SMEDDS was prepared using a combination of Tween 80-Croduret, Propylene Glycol, and Candlenut oil. Optimization formula with SLD method using Design-Expert software based on physical stability parameters there are the percent of transmittance and emulsification time. The optimum formula of SMEDDS was compared with SLD prediction formula using a statistical analysis t-test, then test of loading dose extract, stability test accelerated by centrifugation, particle size, and zeta potential. The proportion of optimum composition of Tween 80-Croduret, Propylene Glycol, and Candlenut oil of SMEDDS was 60.87%; 24.13%; 15.00% respectively. Results of transmittance 41.14±3.78% and emulsification time 119.0±2.08 seconds. The predicted SLD value for the transmittance percent was 55.0% and the emulsification time was 119.59 seconds. The result of the statistical analysis of one sample t-test showed no significant difference between observation results and SLD prediction. The SMEDDS system has F value of 0.99 and capable to load 25.0 mg chloroform extract of soursop leaf each system with an average particle size of 440 nm and zeta potential of +21.5 mV. 


2014 ◽  
Vol 941-944 ◽  
pp. 981-985
Author(s):  
Lu Xia ◽  
Wei Long ◽  
You Shou Zhang ◽  
Jin Huang ◽  
Bu Song Hu

Effect of particle size of Al (OH)3 and Mg-containing modifier of binder and hardener on the dry strength and storage stability of high neutralization degree phosphate-bonded no-bake sand were studied. Results show that particle size of Al (OH)3 has little effect on the dry strength and storage stability when its varieties are 4.552 μ m toothpaste-grade Al (OH)3 and 6.136μm industrial special Al (OH)3, 6.136μm industrial special Al (OH)3 is more appropriate in consideration of cost and source. Adding Mg-containing modifier to binder code 32B8M15B cannot improve the dry strength and storage stability, but adopting compound modifier, 2% fused magnesia powder+2% iron powder+4% copper powder ,can obtain better properties , dry strength can reach 3.022MPa, and the minimum strength is above 1MPa with humidity fluctuation from 21%RH to 60%RH in 18 days.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Thi Lan Nguyen ◽  
Thi Hiep Nguyen ◽  
Dai Hai Nguyen

The formulation of a potential delivery system based on liposomes (Lips) formulated from soy lecithin (SL) for paclitaxel (PTX) was achieved (PTX-Lips). At first, PTX-Lips were prepared by thin film method using SL and cholesterol and then were characterized for their physiochemical properties (particle size, polydispersity index, zeta potential, and morphology). The results indicated that PTX-Lips were spherical in shape with a dynamic light scattering (DLS) particle size of 131±30.5 nm. Besides, PTX was efficiently encapsulated in Lips, 94.5±3.2% for drug loading efficiency, and slowly released up to 96 h, compared with free PTX. More importantly, cell proliferation kit I (MTT) assay data showed that Lips were biocompatible nanocarriers, and in addition the incorporation of PTX into Lips has been proven successful in reducing the toxicity of PTX. As a result, development of Lips using SL may offer a stable delivery system and promising properties for loading and sustained release of PTX in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document