scholarly journals Pharmacologic Characterization of a Kinetic In Vitro Human Co-Culture Angiogenesis Model Using Clinically Relevant Compounds

2013 ◽  
Vol 18 (10) ◽  
pp. 1234-1245 ◽  
Author(s):  
Ashley Wolfe ◽  
Belinda O’Clair ◽  
Vincent E. Groppi ◽  
Dyke P. McEwen

Angiogenesis, the formation of new vessels from preexisting vessels, involves multiple cell types acting in concert to cause endothelial cell proliferation, migration, and differentiation into microvascular arrays. Under pathologic conditions, microenvironment changes result in altered blood vessel production. Historically, in vitro angiogenesis assays study individual aspects of the process and tend to be variable, difficult to quantify, and limited in clinical relevance. Here, we describe a kinetic, quantitative, co-culture angiogenesis model and demonstrate its relevance to in vivo pharmacology. Similar to in vivo angiogenesis, a co-culture of human umbilical vein endothelial cells with normal human dermal fibroblasts remains sensitive to multiple cytokines, resulting in a concentration-dependent stimulation of tube formation over time. Treatment with axitinib, a selective vascular endothelial growth factor (VEGF) antagonist, inhibited VEGF-mediated tube length and branch point formation and was selective for inhibiting VEGF over basic fibroblast growth factor (bFGF), similar to previous studies. Conversely, an FGFR-1 selective compound, PD-161570, was more potent at inhibiting bFGF-mediated angiogenesis. These results demonstrate the cytokine dynamics, selective pharmacology, and translational application of this model system. Finally, combining quantitative angiogenic biology with kinetic, live-content imaging highlights the importance of using validated in vitro models in drug discovery research.

Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2105-2113 ◽  
Author(s):  
Ching-Hu Chung ◽  
Wen-Bin Wu ◽  
Tur-Fu Huang

Abstract Aggretin, a collagen-like α2β1 agonist purified from Calloselasma rhodostoma venom, was shown to increase human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC migration toward immobilized aggretin was also increased. These effects were blocked by A2-IIE10, an antibody raised against integrin α2. Aggretin bound to HUVECs in a dose-dependent and saturable manner, which was specifically inhibited by A2-IIE10, as examined by flow cytometry. Aggretin elicited significant angiogenic effects in both in vivo and in vitro angiogenesis assays, and incubation of HUVECs with aggretin activated phosphatidylinositol 3-kinase (PI3K), Akt, and extracellular-regulated kinase 1/2 (ERK1/2); these effects were blocked by A2-IIE10 or vascular endothelial growth factor (VEGF) monoclonal antibody (mAb). The angiogenic effect induced by aggretin may be via the production of VEGF because the VEGF level was elevated and VEGF mAb pretreatment inhibited Akt/ERK1/2 activation as well as the in vivo angiogenesis induced by aggretin. The VEGF production induced by aggretin can be blocked by A2-IIE10 mAb pretreatment. In conclusion, aggretin induces endothelial cell proliferation, migration, and angiogenesis by interacting with integrin α2β1, leading to activation of PI3K, Akt, and ERK1/2 pathways, and the increased expression of VEGF may be responsible for its angiogenic activity.


Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 356 ◽  
Author(s):  
Si Chen ◽  
P. I. Imoukhuede

Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for both normal development and numerous pathologies. Systems biology has offered a unique approach to study angiogenesis by profiling tyrosine kinase receptors (RTKs) that regulate angiogenic processes and computationally modeling RTK signaling pathways. Historically, this systems biology approach has been applied on ex vivo angiogenesis assays, however, these assays are difficult to quantify and limited in their potential of temporal analysis. In this study, we adopted a simple two-dimensional angiogenesis assay comprised of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) and examined temporal dynamics of a panel of six RTKs and cell heterogeneity up to 17 days. We observed ~2700 VEGFR1 (vascular endothelial growth factor receptor 1) per cell on 24-h-old cocultured HDF plasma membranes, which do not express VEGFR when cultured alone. We observed 4000–8100 VEGFR2 per cell on cocultured HUVEC plasma membranes throughout endothelial tube formation. We showed steady increase of platelet-derived growth factor receptors (PDGFRs) on cocultured HDF plasma membranes, and more interestingly, 1900–2900 PDGFRβ per plasma membrane were found on HUVECs within the first six hours of coculturing. These quantitative findings will offer us insights into molecular regulation during angiogenesis and help assess in vitro tube formation models and their physiological relevance.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Debela Abdeta ◽  
Nigatu Kebede ◽  
Mirutse Giday ◽  
Getachew Terefe ◽  
Solomon Mequanente Abay

Microbial resistance to the few conventional antitrypanosomal drugs, increasing resistance of vectors to insecticides, lack of effective vaccines, and adverse effects of the existing antitrypanosomal drugs justify the urgent need for effective, tolerable, and affordable drugs. We assessed antitrypanosomal effects of the hydromethanolic extract of Echinops kebericho Mesfin roots against Trypanosoma congolense field isolate using in vitro and in vivo techniques. Parasite load, packed cell volume (PCV), body weight, and rectal temperature in Swiss albino mice were assessed. This finding is part of the outcomes of drug discovery research for neglected tropical diseases. The extract arrested the motility of trypanosomes within 40 min at 4 and 2 mg/mL concentration, whereas in the untreated control, motility continued for more than 160 min. The extract also reduced parasitemia and prevented drop in PCV and body weight significantly (p<0.05), as compared to control. Phytochemical analysis showed the presence of flavonoids, triterpenes, steroids, saponins, glycosides, tannins, and alkaloids. It is observed that this extract has activity against the parasite. Isolation and purification of specific compounds are required to identify hit compounds responsible for the antitrypanosomal activity of the studied medicinal plant.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4039-4045
Author(s):  
Giovanni Bernardini ◽  
Gaia Spinetti ◽  
Domenico Ribatti ◽  
Grazia Camarda ◽  
Lucia Morbidelli ◽  
...  

Several chemokines have been shown to act as angiogenic molecules or to modulate the activity of growth factors such as fibroblast growth factor 2 (FGF-2) and vascular endothelial growth factor (VEGF). The detection of the CC chemokine receptor (CCR) 8 message in human umbilical vein endothelial cells (HUVECs) by reverse transcription– polymerase chain reaction (RT-PCR) and RNase protection assay (RPA), prompted us to investigate the potential role exerted by the CC chemokine I-309, a known ligand of such receptor, in both in vitro and in vivo angiogenesis assays. We show here that I-309 binds to endothelial cells, stimulates chemotaxis and invasion of these cells, and enhances HUVEC differentiation into capillary-like structures in an in vitro Matrigel assay. Furthermore, I-309 is an inducer of angiogenesis in vivo in both the rabbit cornea and the chick chorioallantoic membrane assay (CAM).


2015 ◽  
Vol 113 (02) ◽  
pp. 319-328 ◽  
Author(s):  
Abdurazzag Abusnina ◽  
Thérèse Keravis ◽  
Qingwei Zhou ◽  
Hélène Justiniano ◽  
Annelise Lobstein ◽  
...  

SummaryVascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60–550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo antitumour properties through combined PDE2 and PDE4 inhibition.


Author(s):  
Youbin Li ◽  
Yuzhe Liu ◽  
Haotian Bai ◽  
Ronghang Li ◽  
Jing Shang ◽  
...  

Tumor resection and treatment of trauma-related regional large bone defects have major challenges in the field of orthopedics. Scaffolds that treat bone defects are the focus of bone tissue engineering. 3D printing porous titanium alloy scaffolds, prepared via electron beam melting technology, possess customized structure and strength. The addition of a growth factor coating to the scaffold introduces a specific form of biological activation. Vascular endothelial growth factor (VEGF) is key to angiogenesis and osteogenesis in vivo. We designed a porous titanium alloy scaffold/thermosensitive collagen hydrogel system, equipped with VEGF, to promote local osseointegration and angiogenesis. We also verified the VEGF release via thermosensitive collagen and proliferation and induction of the human umbilical vein endothelial cells (HUVECs) via the composite system in vitro. In vivo, using microscopic computed tomography (Micro-CT), histology, and immunohistochemistry analysis, we confirmed that the composite scaffold aids in angiogenesis-mediated bone regeneration, and promotes significantly more bone integration. We also discovered that the composite scaffold has excellent biocompatibility, provides bioactive VEGF for angiogenesis and osteointegration, and provides an important theoretical basis for the restoration of local blood supply and strengthening of bone integration.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1396 ◽  
Author(s):  
Özgür Uslu ◽  
Joerg Herold ◽  
Sandip M. Kanse

Alternative splicing leads to the secretion of multiple forms of vascular endothelial growth factor-A (VEGF-A) that differ in their activity profiles with respect to neovascularization. FSAP (factor VII activating protease) is the zymogen form of a plasma protease that is activated (FSAPa) upon tissue injury via the release of histones. The purpose of the study was to determine if FSAPa regulates VEGF-A activity in vitro and in vivo. FSAP bound to VEGF165, but not VEGF121, and VEGF165 was cleaved in its neuropilin/proteoglycan binding domain. VEGF165 cleavage did not alter its binding to VEGF receptors but diminished its binding to neuropilin. The stimulatory effects of VEGF165 on endothelial cell proliferation, migration, and signal transduction were not altered by FSAP. Similarly, proliferation of VEGF receptor-expressing BAF3 cells, in response to VEGF165, was not modulated by FSAP. In the mouse matrigel model of angiogenesis, FSAP decreased the ability of VEGF165, basic fibroblast growth factor (bFGF), and their combination, to induce neovascularization. Lack of endogenous FSAP in mice did not influence neovascularization. Thus, FSAP inhibited VEGF165-mediated angiogenesis in the matrigel model in vivo, where VEGF’s interaction with the matrix and its diffusion are important.


2020 ◽  
Vol 20 (5) ◽  
pp. 598-610
Author(s):  
Nileshkumar Meghani ◽  
Beom-Jin Lee ◽  
Hardik Amin ◽  
Behzad Nili-Ahmadabadi ◽  
Saraswathy Nagendran

For a number of decades, schistosomiasis has remained a public threat and an economic burden in a number of countries, directly impacting over 200 million people. The past 15 years have seen tremendous progress in the development of high-throughput methods for targeting or compound selection that are vital to early-stage schistosome drug discovery research. Genomewide approaches to analyze gene expression at the transcriptional and other -omic levels have helped immensely for gaining insight into the pathways and mechanisms involved in the schistosomiasis and it is expected to revolutionize the drug discovery as well as related diagnostics. This review discusses the most recent progress of pharmacology and genomics concerning schistosomiasis with a focus on drug discovery and diagnostic tools. It also provides chemical structural insights of promising targets along with available in vitro and/or in vivo data. Although significant research has been done to identify new molecules for the treatment and new methods for diagnosis, the necessity of new options for the sustainable control of schistosomiasis remains a great challenge.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Ana C Palei ◽  
Jennifer M Sasser ◽  
Joey P Granger

Although the etiology of preeclampsia (PE) remains unclear, evidence indicates that impaired trophoblast invasion followed by placental ischemia promotes the release of placental anti-angiogenic factors into the maternal circulation. These factors then elicit maternal endothelial dysfunction and hypertension by blocking the action of molecules such as the placental growth factor (PlGF). Inhibition of phosphodiesterase (PDE)-5 with sildenafil or other has been proposed as a potential therapy for PE; however, the mechanisms whereby PDE-5 inhibitors reduce blood pressure (BP) and improve uteroplacental perfusion during pregnancy are not clear. While previous studies have shown that PDE-5 inhibition induces PlGF production from human umbilical vein endothelial cells; it is unknown whether PDE-5 inhibitors also increase PlGF from placenta. Thus, the aim of this study was to evaluate whether sildenafil enhance placental secretion/production of PlGF in vitro and in vivo. In our in vitro protocol, we incubated placental villous explants from Sprague Dawley (SD) pregnant rats (n=4, 2-3 placentas per rat) at gestational day (GD)19 with different doses of sildenafil for 48h at 37°C under normoxia (8% O 2 ). PlGF-2 was measured in media of cultured explants by ELISA. We observed that sildenafil had no effect on PlGF-2 secretion from rat placental villi (vehicle: 562.7±46.6, 10nM: 559.3±39.5, 100nM: 556.4±35.9, 10uM: 546.2±37.5, and 100uM: 558.7±48.2pg/mg; P>0.05). In our in vivo protocol, we treated Dahl Salt-Sensitive (DS) pregnant rats (n=6-8 per group), which we had previously characterized as a model of superimposed PE, with sildenafil (50mg/kg per day, via food) from GD10 to 20. PlGF-2 was measured in placental homogenates by ELISA. While untreated DS dams exhibited an increase in BP and uterine artery resistance index (UARI) from baseline to late pregnancy, sildenafil-treated DS dams exhibited a significant decrease in BP and UARI. In addition, we found that placental levels of PlGF-2 were elevated in sildenafil-treated DS dams compared with untreated counterparts (1019±107.3 and 646.8±125.1pg/mg; P=0.0407). In conclusion, our findings suggest that the BP and UARI reduction in response to sildenafil may involve the indirect production of PlGF.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Michelle LeBlanc ◽  
Weiwen Wang ◽  
Feiye Guo ◽  
Chen Shen ◽  
Rui Chen ◽  
...  

Background: Endothelial ligands extrinsically regulate a broad spectrum of vascular functions with therapeutic potentials, but are traditionally identified on a case-by-case basis with technical challenges. We recently developed open reading frame phage display (OPD) for unbiased identification of phagocytosis ligands. In this study, we identified hepatoma-derived growth factor related protein-3 (HRP-3) as a putative endothelial ligand by OPD. We hypothesized that HRP-3 is a novel endothelial growth factor, capable of promoting endothelial cell (EC) growth and migration. Methods and Results: We performed 3 rounds of in vivo phage binding selection in mice with an OPD library, screened enriched phage clones by next generation DNA sequencing, and identified HRP-3 as one of the putative endothelial ligands. To confirm the finding, clonal phages displaying HRP-3, VEGF and GFP were generated and analyzed for their binding to human umbilical vein endothelial cells (HUVECs). The results show that HRP-3-Phage and VEGF-Phage had significantly higher binding to HUVECs than GFP-Phage. Functional analysis showed that purified recombinant HRP-3 significantly increased the proliferation of HUVECs at 24 and 48 h, whereas VEGF induced significant growth only at 48 h. Consistent with these findings, HRP-3 significantly stimulated cell proliferation by MTT assay. In vitro wound-healing assay indicated that both HRP-3 (500 ng/ml) and VEGF (50 ng/ml) significantly promoted the migration of HUVECs into the denuded area. To dissect the downstream signaling pathway, we demonstrated that HRP-3 significantly induced ERK1/2 phosphorylation in HUVECs after 10 min treatment. Similar effects of HRP-3 and VEGF on EC growth, migration, and ERK activation were also verified using human aorta endothelial cells. Conclusions: Our findings demonstrate that HRP-3 is a novel ligand, capable of promoting proliferation and migration of ECs. The pro-growth effect of HRP-3 is at least partially mediated through ERK pathway activation. These results in turn support the broad applicability of OPD for the systematic discovery of endothelial ligands.


Sign in / Sign up

Export Citation Format

Share Document