Suppression of Procollagen α1 Type 1 by Long-Term Low-Dose Exposure to 2-Hydroxyethylmethacrylate in Human Gingival Fibroblasts In Vitro

2010 ◽  
Vol 29 (5) ◽  
pp. 523-531 ◽  
Author(s):  
Mirella Falconi ◽  
Michela Ortolani ◽  
Gabriella Teti ◽  
Michela Zago ◽  
Giovanna Orsini ◽  
...  

The purpose of this study was to evaluate the cytotoxicity of low doses and long-term exposure to 2-hydroxyethylmethacrylate (HEMA) on the protein expression of human gingival fibroblasts (HGFs). Human gingival fibroblasts were exposed to different concentrations of HEMA ranging from 0.5 mmol/L to 3 mmol/L for periods of time from 72 hours to 2 weeks. A significant decrease in the expression of procollagen α1 type I protein was observed 72 hours after treatment of cells with 3 mmol/L HEMA. Although low concentrations of the monomer after 2 weeks of exposure to HEMA did not appear to induce any marked changes in the morphology or viability of cells, the expression of procollagen α1 type I protein and its messenger RNA (mRNA) markedly decreased. In conclusion, our data demonstrated that cell viability and morphology assays could be deficient parameters in evaluating the biocompatibility of dental resin materials.

1987 ◽  
Vol 66 (9) ◽  
pp. 1449-1455 ◽  
Author(s):  
S. Pitaru ◽  
M. Soldinger ◽  
D. Madgar ◽  
Z. Metzger

The purpose of this study was to assess the effect of endotoxin adsorbed to dental surfaces and to collagen type I on the migration, attachment, and orientation of human gingival fibroblasts (HGF). Transversely cut porcine tooth root slices (RS), 200 μm thick, were prepared. Half of the RS obtained were partially demineralized in EDTA. Half of the demineralized and non-demineralized RS were incubated with 400 μg/mL of endotoxin for 24 hr, whereas the other half were maintained in PBS and served as controls. Experimental and control RS were placed on confluent layers of HFG and cultured for six days. Cell migration toward and cell attachment to the periphery of the RS and the formation of oriented cell sheets were assessed by means of photographic techniques. Additionally, six-day-old cultures were fixed and processed for SEM observation. In separate experiments, the effect of endotoxin on cell attachment to collagen type I and on contraction of three-dimensional collagen gels was assessed. It was found that: (i) bacterial endotoxin inhibited migration and attachment of HGF to both demineralized and non-demineralized cementum and interfered with the development of oriented cellular structure ; (ii) the inhibitory effect was significantly more pronounced for non-demineralized than for demineralized cementum; (iii) the morphology of HGF attached to endotoxin-treated dental surfaces was altered compared with that of their controls; and (iv) bacterial endotoxin inhibited cell attachment to collagen type I and delayed the contraction of collagen gel.


2004 ◽  
Vol 83 (12) ◽  
pp. 914-919 ◽  
Author(s):  
M. Lefeuvre ◽  
K. Bourd ◽  
M.-A. Loriot ◽  
M. Goldberg ◽  
P. Beaune ◽  
...  

Dental resinous materials can contain large amounts (from 30 to 50%) of triethylene-glycol-dimethacrylate (TEGDMA). This compound leaches into aqueous media and is toxic to dental pulp, as well as to gingival fibroblasts in vitro. To elucidate the mechanism of TEGDMA toxicity, we investigated the effects on glutathione (GSH) level and glutathione transferase P1 (GSTP1) activity in cultured human gingival fibroblasts. TEGDMA cytotoxic concentrations (from 0.5 to 2 mM) induced a depletion of GSH without formation of oxidized GSH (GSSG). In fibroblasts expressing the wild-type GSTP1, TEGDMA both inhibited and potentiated GSTP1 activity at high (IC50 = 1.1 mM) and low concentrations, respectively. In contrast, cells expressing the GSTP1 *A/*B variant showed a weak inhibition of GST activity only, associated with greater sensitivity to drug toxicity. Biochemical analysis of GSTP1 inhibition revealed that TEGDMA is a non-competitive antagonist with respect to GSH and substrate. Thus, TEGDMA interference with GSH and GSTP1 activity may contribute to dental-resin-induced adverse effects.


Odontology ◽  
2020 ◽  
Author(s):  
Stefano Pagano ◽  
Guido Lombardo ◽  
Egidia Costanzi ◽  
Stefania Balloni ◽  
Stefano Bruscoli ◽  
...  

AbstractTo analyze the effects of four universal adhesives (Optibond Solo Plus—OB, Universal Bond—UB, Prime&Bond Active—PBA, FuturaBond M + —FB) on human gingival fibroblasts in terms of cytotoxicity, morphology and function. After in vitro exposure for up to 48 h, fibroblast viability was determined by the MTT assay determined, morphology by phase-contrast microscopy and migration by the scratch wound assay. Expression levels of IL1β, IL6, IL8, IL10, TNFα and VEGF genes were assessed by RT-PCR and their protein production by Western blot analysis. Apoptosis and cell cycle were analyzed by flow cytometry. OB and UB induced early morphological changes on fibroblasts (3 h) with extended cell death at 24 h/48 h. Gene expression of collagen type I and fibronectin increased fivefold compared with controls, elastin disappeared and elastase increased threefold, indicating gingival tissue tended to become fibrotic. Only UB and OB increased gene expression of inflammatory markers: IL1β at 3 and 48 h (up to about three times), IL6 and IL8 at 3 h (up to almost four times) which corresponded to the increase of the activated form NF-kB. All adhesives showed an effect on the functionality of fibroblasts with cytotoxic effect time and concentration dependent. Among all the OB and UB adhesives, they showed the greatest cell damage. The in-depth analysis of the effects of universal adhesives and possible functional effects represents an important information for the clinician towards choosing the most suitable adhesive system.


2018 ◽  
Vol 206 (6) ◽  
pp. 296-307 ◽  
Author(s):  
My Thi Ngoc Nguyen ◽  
Ha Le Bao Tran

Supportive membranes have recently been applied to treat periodontal disease in order to achieve periodontal tissue regeneration. The crucial role of these membranes is to facilitate the restoration of the structural and functional periodontium. Bovine pericardium (BP) is mainly composed of collagen type I, which was demonstrated to have good mechanical properties and biological regenerative potential. Our research aimed to extend the application of membrane derived from BP to periodontal disease treatment. However, the fabrication method to achieve a xenogenic-free membrane with the mechanical properties required for periodontal treatment is rarely mentioned. Therefore, a procedure for the extraction and modification of BP using sodium dodecyl sulfate (SDS) and glutaraldehyde (GA) was developed. BP was harvested and decellularized using different SDS concentrations (0.05–0.3%). GA was used to further modify the membranes to achieve suitable thickness, mechanical strength, and pore size. A combination protocol of 0.15% SDS treatment for 12 h with continuous agitation combined with 0.1% GA for 6 h for membrane fabricating was applied. The modified BP (mBP) had the targeted characteristics, such as 0.2–0.5 mm thickness, approximately 10 MPa in tensile strength, 30% in strain force, and a pore size <5 µm, which is comparable to commercially available collagen membranes. Findings from this study demonstrated that the established method was effective in preparing BP membrane for periodontal treatment while decreasing the concentration of reagents and processing time. Moreover, our modified membrane was found to have no cytotoxicity but supports the migration, attachment, and proliferation of human gingival fibroblasts in vitro. Taken together, these results confirmed that mBP is suitable for application in periodontal disease treatment and regeneration.


1992 ◽  
Vol 21 (4) ◽  
pp. 181-185 ◽  
Author(s):  
G. P. Schincaglia ◽  
F. Forniti ◽  
R. Cavallini ◽  
R. Piva ◽  
G. Calura ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
pp. 519-522
Author(s):  
Jeyakumar S ◽  
Jagatheesan Alagesan ◽  
T.S. Muthukumar

Background: Frozen shoulder is disorder of the connective tissue that limits the normal Range of motion of the shoulder in diabetes, frozen shoulder is thought to be caused by changes to the collagen in the shoulder joint as a result of long term Hypoglycemia. Mobilization is a therapeutic movement of the joint. The goal is to restore normal joint motion and rhythm. The use of mobilization with movement for peripheral joints was developed by mulligan. This technique combines a sustained application of manual technique “gliding” force to the joint with concurrent physiologic motion of joint, either actively or passively. This study aims to find out the effects of mobilization with movement and end range mobilization in frozen shoulder in Type I diabetics. Materials and Methods: 30 subjects both male and female, suffering with shoulder pain and clinically diagnosed with frozen shoulder was recruited for the study and divided into two groups with 15 patients each based on convenient sampling method. Group A patients received mobilization with movement and Group B patients received end range mobilization for three weeks. The outcome measurements were SPADI, Functional hand to back scale, abduction range of motion using goniometer and VAS. Results: The mean values of all parameters showed significant differences in group A as compared to group B in terms of decreased pain, increased abduction range and other outcome measures. Conclusion: Based on the results it has been concluded that treating the type 1 diabetic patient with frozen shoulder, mobilization with movement exercise shows better results than end range mobilization in reducing pain and increase functional activities and mobility in frozen shoulder.


Author(s):  
Jens Weusmann ◽  
James Deschner ◽  
Jean-Claude Imber ◽  
Anna Damanaki ◽  
Natalia D. P. Leguizamón ◽  
...  

Abstract Objectives Air-polishing has been used in the treatment of periodontitis and gingivitis for years. The introduction of low-abrasive powders has enabled the use of air-polishing devices for subgingival therapy. Within the last decade, a wide range of different low-abrasive powders for subgingival use has been established. In this study, the effects of a glycine powder and a trehalose powder on human gingival fibroblasts (HGF) were investigated. Methods HGF were derived from three systemically and periodontally healthy donors. After 24 h and 48 h of incubation time, mRNA levels, and after 48 h, protein levels of TNFα, IL-8, CCL2, and VEGF were determined. In addition, NF-κB p65 nuclear translocation and in vitro wound healing were assessed. Statistical analysis was performed by ANOVA and post hoc Dunnett’s and Tukey’s tests (p < 0.05). Results Glycine powder significantly increased the expression of proinflammatory genes and showed exploitation of the NF-κB pathway, albeit trehalose powder hardly interfered with cell function and did not trigger the NF-κB pathway. In contrast to trehalose, glycine showed a significant inhibitory effect on the in vitro wound healing rate. Conclusion Subgingivally applicable powders for air-polishing devices can regulate cell viability and proliferation as well as cytokine expression. Our in vitro study suggests that the above powders may influence HGF via direct cell effects. Trehalose appears to be relatively inert compared to glycine powder.


2014 ◽  
Vol 19 (2) ◽  
pp. 221-227 ◽  
Author(s):  
C. J. Doyle ◽  
T. R. Fitzsimmons ◽  
C. Marchant ◽  
A. A. S. S. K. Dharmapatni ◽  
R. Hirsch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document