High-order crack propagation in compressed sandwich panels

2019 ◽  
Vol 21 (5) ◽  
pp. 1726-1750 ◽  
Author(s):  
Itay Odessa ◽  
Oded Rabinovitch ◽  
Yeoshua Frostig

The response and the debonding mechanisms in axially compressed sandwich panels with an interfacial delamination are investigated using a nonlinear model. The mathematical model combines the extended high-order sandwich panel theory with a cohesive interface modeling. It includes the first-order shear deformation kinematic assumptions for the face sheets and high-order small deformations kinematic assumptions that account for out-of-plane compressibility for the core. The interfaces bond the face sheets and the core by means of traction–displacement gap laws. These interfacial laws can describe a diversity of physical conditions. In particular, interfacial debonding nucleation and propagation are described using cohesive laws that introduce the interfacial nonlinearity into the model. Geometrical nonlinearity of the face sheets is introduced in order to capture the instability associated with the buckling of the delaminated face sheet. The cohesive interfaces and others parameters are calibrated to match experimental results taken from the literature for a sandwich specimen subjected to an end-shortening compression. The instabilities due to the in-plane compression, together with the existence of delaminated regions and their tendency to grow, prompt buckling of the delaminated face sheet as well as nucleation and propagation of the interfacial debonding. The theoretical quantification of this complex mechanism compares well with the experimental results in terms of the physical response, the nucleation and propagation of the interfacial crack, and the evolution of local/global geometrical instabilities. In addition, the analysis explores debonding mechanisms that are beyond the capabilities of the experimental technique. Finally, the sensitivity of the response and the associated geometrical and interfacial instabilities to the boundary conditions are investigated.

2017 ◽  
Vol 21 (8) ◽  
pp. 2779-2800 ◽  
Author(s):  
Peter Rupp ◽  
Peter Elsner ◽  
Kay A Weidenmann

In this paper, the bending stiffness-to-weight-ratio of novel hybrid sandwich structures is investigated. The build-up of the sandwich panels consisted of face sheets made from carbon fibre reinforced polymer, aluminium foam cores and an interface of foamed polyurethane. The sandwich panels were produced in a single step, infiltrating the face sheet fibres and connecting the face sheets to the core simultaneously. By means of mechanical characterization, specimens with several variations of face sheet architecture and thickness, core structure and interface properties were examined. Quasi-static four-point bending and flatwise compression tests of the sandwich composites were conducted, as well as tensile tests of the face sheets. The results of the tensile and compressive tests were integrated in analytical models, describing the sandwich stiffness depending on the load case and the face sheet volume fraction. The effective Young’s modulus of the composite, measured in the four-point bending test, correlates well to the modelled effective bending modulus calculated from the single components face sheet and core. The model underestimates the effective density of the bending specimens. It could be shown that this underestimation results from the polyurethane foam connecting the face sheets to the core, as the mass of this polyurethane is not included in the model.


2000 ◽  
Author(s):  
Bhavani V. Sankar ◽  
Manickam Narayanan ◽  
Abhinav Sharma

Abstract Nonlinear finite element analysis was used to simulate compression tests on sandwich composites containing debonded face sheets. The core was modeled as an elastic-perfectly-plastic material, and the face-sheet as elastic isotropic. The effects of core plasticity, face-sheet and core thickness, and debond length on the maximum load the beam can carry were studied. The results indicate that the core plasticity is an important factor that determines the maximum load.


Author(s):  
Francesco Franco ◽  
Kenneth A. Cunefare ◽  
Massimo Ruzzene

Sandwich panels, comprising face sheets enclosing a core, are increasingly common structural elements in a variety of applications, including aircraft fuselages and flight surfaces, vehicle panels, lightweight enclosures, and bulkheads. The design flexibility associated with such composite structures provides significant opportunities for tailoring the structure to the load and dynamic response requirements for the particular application. Design flexibility encompasses the details of the face sheets and the core. This paper deals with the numerical optimization of different sandwich configurations for the purposes of achieving reduced structural acoustic response. Laminated face sheets and core geometries, comprising honeycomb and truss-like structures, are considered. The relative importance of the mass and stiffening properties of the core and face sheets are discussed. The optimization work is carried out using commercial codes. Benefits and limits of using an optimization algorithm based on gradient methods are highlighted.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Itay Odessa ◽  
Oded Rabinovitch ◽  
Yeoshua Frostig

Abstract The geometrical nonlinear dynamic response of sandwich beams is studied using a dynamic high-order nonlinear model. The model is derived using the variational principle of virtual work and uses the Extended High-Order Sandwich Panel Theory approach with consideration of two interfaces between the three layers. A first-order shear deformation theory is adopted for the face sheets, while the kinematic assumption of high-order small deformations that account for out-of-plane compressibility are considered for the core layer. The nonlinearity of the dynamic model is introduced by considering geometrically nonlinear kinematic relations in the face sheets. The nonlinear kinematic relations and the dynamic modeling aim to evaluate the effects of the two features and their coupling on the response. The nonlinear dynamic response of sandwich beams is studied through two numerical cases and comparison of the nonlinear results with their linear counterparts. The first case looks into the coupling of the global geometrical nonlinear behavior with the dynamic behavior. The second case focuses on the local instability of the face sheets and its interaction with the compressibility of the core in the dynamic response of soft core sandwich beams. The comparison of linear and nonlinear dynamic response in the two cases sheds light on the coupling of the geometrical nonlinear and dynamic behaviors. Among other features, the latter is expressed by nonlinear attractors, higher modes response, nonlinear frequency response, and significant wrinkling response.


Author(s):  
P. R. Underhill ◽  
T. Rellinger ◽  
T. W. Krause ◽  
D. Wowk

Abstract The use of eddy current (EC) arrays to detect damage in sandwich panels, such as disbonding of the carbon fiber reinforced polymer (CFRP) face-sheet to the core, is investigated. It is shown that the array is very sensitive to slight core crush and can readily find small dents and disbonds. At the same time, the eddy current array can look much deeper into the honeycomb to detect defects such as tears. The phase map of the EC signal can be used in some cases to distinguish between different types of damage. EC arrays offer the ability to rapidly scan large areas of CFRP panels.


2015 ◽  
Vol 825-826 ◽  
pp. 433-440 ◽  
Author(s):  
Philipp Stein ◽  
David Übelacker ◽  
Dirk Holke ◽  
Peter Groche

Continually increasing exhaust emission standards for automobiles and an increasing environmental awareness push design engineers to develop new constructive and material concepts. So-called sandwich panels, consisting of stiff facings and light-weight cores, offer the possibility to combine properties of different materials synergistically. When processing large quantities, as is the case in the automotive industry commonly used manufacturing processes for cutting sandwich panels, like sawing or milling, are not applicable. A common manufacturing process to cut metal sheets in high quantities is shear cutting. However, pre-trials of shear cutting of sandwich panels have shown that it is not possible to achieve flawless cutting surfaces with current process layouts. Characteristic types of failure like high bending of the facings, delamination effects, burr formation and an undefined cracking of the core material were ascertained. Thus, in this study, the influence of cutting parameters, such as the clearance and the punch diameter, on these types of failure is examined. Five different clearances between 0.025 mm and 0.4 mm with two punch diameters, 8 mm and 32 mm, were investigated. In order to compare the influence of different materials, three commercially available sandwich panels were studied. The chosen sandwich panels differ both in the face sheet thickness and the core material. Finally, the shear cutting force is measured to identify a possible correlation between the cutting force and the face bending. As a result, optimal clearances to minimize the face bending are derived. Additionally, the influence of the core stiffness on the cutting force is determined.


2000 ◽  
Author(s):  
Liviu Librescu

Abstract This paper deals with a comprehensive geometrically nonlinear theory of shallow sandwich shells that includes also the effect of the initial geometric imperfections. It is assumed that the face-sheets of the sandwich structure are built-up from anisotropic materials layers, whereas the core layer from an orthotropic material. As a result of its features the structural model can provide important information related to the load carrying capacity of sandwich structures in the pre- and postbuckling ranges. Moreover, by using the directionality properties of face-sheets materials, possibilities of enhancing the load carrying capacity of sandwich shells/plates are reached. Selected numerical illustrations emphasizing these features are presented and pertinent conclusions on the beneficial implications of anisotropy of face-sheets and core layer materials upon the load-carrying capacity of sandwich panels are emphasized. Under the present study, the sandwich structure consists of a thick core-layer bonded by the face-sheets that consist of composite anisotropic materials, symmetrically laminated with respect to the mid-surface of the core-layer. The initial geometric imperfection consisting of a stress free initial transversal deflection, will be also incorporated in the study. The loads under which the nonlinear response will be analyzed consist basically of uniaxial/biaxial compressive edge and lateral loads.


2017 ◽  
Vol 21 (8) ◽  
pp. 2654-2679 ◽  
Author(s):  
Peter Rupp ◽  
Peter Elsner ◽  
Kay A Weidenmann

This work focuses on failure mode maps of sandwich panels exposed to bending load, which were produced using a polyurethane spraying process. This process allows for an automated production of sandwich panels omitting a separate bonding step of the face sheets to the core. The investigated sandwich panels consisted of carbon fiber reinforced face sheets in various configurations, and four different core structures of aluminum foam or Nomex honeycomb. After production, measurements of the pores inside the core foam structures, the fiber package thickness inside the face sheets, and the density homogeneity of the core structure were made using X-ray computed tomography. The failure mode maps were based on the individual mechanical properties of the face sheets and the core, determined by mechanical testing. The critical forces determining the failure modes were partially modified to fit the application on foam core structures and face sheets with a porous matrix. The verification of the failure modes was performed with four-point bending tests. Since all tested configurations of sandwich specimens were produced using the same process route, the applied models for the creation of the failure mode maps could be verified for numerous parameter combinations. Except for two parameters with inconstant properties, the failure modes determined by the failure mode maps matched the observed failure modes determined by the bending tests.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Lin Mu ◽  
Guiping Zhao

This study is interested in assessing a way to analyze fundamental frequency of sandwich beams with functionally graded face sheet and homogeneous core. The face sheet, which is an exponentially graded material (EGM) varying smoothly in the thickness direction only, is composed of a mixture of metal and ceramic. The core which is made of foam metal is homogeneous. The classical plate theory (CPT) is used to analyze the face sheet and a higher-order theory (HOT) is used to analyze the core of sandwich beams, in which both the transverse normal and shear strains of the core are considered. The extended Galerkin method is used to solve the governing equations to obtain the vibration equations of the sandwich beams suitable for numerical analysis. The fundamental frequency obtained by the theoretical model is validated by using the finite element code ABAQUS and comparison with earlier works. The influences of material and geometric properties on the fundamental frequency of the sandwich beams are analyzed.


2012 ◽  
Vol 14 (6) ◽  
pp. 715-733
Author(s):  
Karamat Malekzadeh Fard ◽  
Alireza Sayyidmousavi ◽  
Zouheir Fawaz ◽  
Habiba Bougherara

In this article, a three-dimensional finite element model is proposed to study the effect of distributed attached mass with thickness and stiffness on the buckling instability of sandwich panels with transversely flexible cores. Unlike the previous works in the literature which have made use of unified displacement theories, the present model uses different types of finite elements to model the core and the face sheets. It utilizes shell elements for the face sheets and three-dimensional solid elements for the core which enables the model to account for the transverse flexibility of the structure. The motions of the face sheets and the core as well as the attached mass are related through defining constraint equations between the nodes of their respective finite elements based on the concept of master and slave nodes which is incorporated into the finite element analysis program ANSYS through a user-defined subroutine. The validated finite element model is then used to study the effects of size, thickness, material property, aspect ratio, and the position of the attached mass on the buckling load of a sandwich panel under different combinations of boundary conditions. The results presented in this study have hitherto not been reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document