Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis

2012 ◽  
Vol 19 (5) ◽  
pp. 559-566 ◽  
Author(s):  
Anne-Marie Dogonowski ◽  
Hartwig R Siebner ◽  
Per Soelberg Sørensen ◽  
Xingchen Wu ◽  
Bharat Biswal ◽  
...  

Background: Multiple sclerosis (MS) impairs signal transmission along cortico-cortical and cortico-subcortical connections, affecting functional integration within the motor network. Functional magnetic resonance imaging (fMRI) during motor tasks has revealed altered functional connectivity in MS, but it is unclear how much motor disability contributed to these abnormal functional interaction patterns. Objective: To avoid any influence of impaired task performance, we examined disease-related changes in functional motor connectivity in MS at rest. Methods: A total of 42 patients with MS and 30 matched controls underwent a 20-minute resting-state fMRI session at 3 Tesla. Independent component analysis was applied to the fMRI data to identify disease-related changes in motor resting-state connectivity. Results: Patients with MS showed a spatial expansion of motor resting-state connectivity in deep subcortical nuclei but not at the cortical level. The anterior and middle parts of the putamen, adjacent globus pallidus, anterior and posterior thalamus and the subthalamic region showed stronger functional connectivity with the motor network in the MS group compared with controls. Conclusion: MS is characterised by more widespread motor connectivity in the basal ganglia while cortical motor resting-state connectivity is preserved. The expansion of subcortical motor resting-state connectivity in MS indicates less efficient funnelling of neural processing in the executive motor cortico-basal ganglia-thalamo-cortical loops.

2022 ◽  
Author(s):  
Line Folvik ◽  
Markus H Sneve ◽  
Hedda Ness ◽  
Didac Vidal-Pineiro ◽  
Liisa Raud ◽  
...  

Systems consolidation of new experiences into lasting episodic memories involves interactions between hippocampus and the neocortex. Evidence of this process is seen already during early awake post-encoding rest periods. Functional MRI (fMRI) studies have demonstrated increased hippocampal coupling with task-relevant perceptual regions and reactivation of stimulus-specific encoding patterns following intensive encoding tasks. Here we investigate the spatial and temporal characteristics of these hippocampally anchored post-encoding neocortical modulations. Eighty-nine adults participated in an experiment consisting of interleaved memory task- and resting-state periods. As expected, we observed increased post-encoding functional connectivity between hippocampus and individually localized neocortical regions responsive to stimulus categories encountered during memory encoding. Post-encoding modulations were however not restricted to stimulus-selective cortex, but manifested as a nearly system-wide upregulation in hippocampal coupling with all major functional networks. The spatial configuration of these extensive modulations resembled hippocampal-neocortical interaction patterns estimated from active encoding operations, suggesting hippocampal post-encoding involvement by far exceeds reactivation of perceptual aspects. This reinstatement of encoding patterns during immediate post-encoding rest was not observed in resting-state scans collected 12 hours later, nor in control analyses estimating post-encoding neocortical modulations in functional connectivity using other candidate seed regions. The broad similarity in hippocampal functional coupling between online memory encoding and offline post-encoding rest suggests reactivation in humans may involve a spectrum of cognitive processes engaged during experience of an event.


2016 ◽  
Author(s):  
Jiahui Wang ◽  
Yudan Ren ◽  
Xintao Hu ◽  
Vinh Thai Nguyen ◽  
Lei Guo ◽  
...  

AbstractFunctional connectivity analysis has become a powerful tool for probing the human brain function and its breakdown in neuropsychiatry disorders. So far, most studies adopted resting state paradigm to examine functional connectivity networks in the brain, thanks to its low demand and high tolerance that are essential for clinical studies. However, the test-retest reliability of resting state connectivity measures is moderate, potentially due to its low behavioral constraint. On the other hand, naturalistic neuroimaging paradigms, an emerging approach for cognitive neuroscience with high ecological validity, could potentially improve the reliability of functional connectivity measures. To test this hypothesis, we characterized the test-retest reliability of functional connectivity measures during a natural viewing condition, and benchmarked it against resting state connectivity measures acquired within the same functional magnetic resonance imaging (fMRI) session. We found that the reliability of connectivity and graph theoretical measures of brain networks is significantly improved during natural viewing conditions over resting state conditions, with an average increase of almost 50% across various connectivity measures. Not only sensory networks for audio-visual processing become more reliable, higher order brain networks, such as default mode and attention networks, also appear to show higher reliability during natural viewing. Our results support the use of natural viewing paradigms in estimating functional connectivity of brain networks, and have important implications for clinical application of fMRI.


2011 ◽  
Vol 26 (S2) ◽  
pp. 915-915
Author(s):  
R. Boubela ◽  
K. Kalcher ◽  
G. Pail ◽  
W. Huf ◽  
C. Scharinger ◽  
...  

IntroductionConverging evidence suggests alterations of neural activation in the basal ganglia to represent neural correlates of Major Depressive Disorder (MDD). While a previous study reported increases of functional connectivity in resting state activity between the caudate nuclei and the posterior cingulate cortex in acutely depressed patients, it remains unclear whether this finding persists during full remission once antidepressant treatment has been discontinued.ObjectivesTo investigate patterns of functional coupling between the basal ganglia and cortical regions during resting-state conditions.AimsTo determine whether increases of functional connectivity between caudate nuclei, putamen, and pallidum with cortical regions, in particular the cingulate cortex, pertain during remission of MDD.MethodsForty-three remitted depressed (rMDD) patients and thirty-five healthy controls were recruited at Medical University of Vienna, Vienna, Austria, and performed a six minute resting-state fMRI scan. Seed time series were extracted from the preprocessed data using individual masks for the basal ganglia and correlated with all nodes in a surface based analysis using FreeSurfer, AFNI and SUMA. The resulting correlation coefficients were then Fisher-transformed, group results were determined by comparing group mean smoothed z-scores with a two-sample t-test.ResultsIncreased resting-state functional connectivity was revealed between basal ganglia and cingulate as well as prefrontal cortex in the rMDD group compared to healthy controls.ConclusionsOur preliminary results revealed increased functional coupling between the basal ganglia and wide parts of the cingulate and prefrontal cortex to possibly represent a specific neural pattern during remission of MDD.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alina Schulte ◽  
Christiane M. Thiel ◽  
Anja Gieseler ◽  
Maike Tahden ◽  
Hans Colonius ◽  
...  

Abstract Age-related hearing loss has been related to a compensatory increase in audio-visual integration and neural reorganization including alterations in functional resting state connectivity. How these two changes are linked in elderly listeners is unclear. The current study explored modulatory effects of hearing thresholds and audio-visual integration on resting state functional connectivity. We analysed a large set of resting state data of 65 elderly participants with a widely varying degree of untreated hearing loss. Audio-visual integration, as gauged with the McGurk effect, increased with progressing hearing thresholds. On the neural level, McGurk illusions were negatively related to functional coupling between motor and auditory regions. Similarly, connectivity of the dorsal attention network to sensorimotor and primary motor cortices was reduced with increasing hearing loss. The same effect was obtained for connectivity between the salience network and visual cortex. Our findings suggest that with progressing untreated age-related hearing loss, functional coupling at rest declines, affecting connectivity of brain networks and areas associated with attentional, visual, sensorimotor and motor processes. Especially connectivity reductions between auditory and motor areas were related to stronger audio-visual integration found with increasing hearing loss.


2015 ◽  
Vol 87 (8) ◽  
pp. 912-914 ◽  
Author(s):  
Anne-Marie Dogonowski ◽  
Morten Blinkenberg ◽  
Olaf B Paulson ◽  
Finn Sellebjerg ◽  
Per Soelberg Sørensen ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Charlotte J Stagg ◽  
Velicia Bachtiar ◽  
Ugwechi Amadi ◽  
Christel A Gudberg ◽  
Andrei S Ilie ◽  
...  

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these ‘resting state networks’ is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies.


Author(s):  
Lisa Parikh ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Renata Belfort-DeAguiar ◽  
Derek Groskreutz ◽  
...  

Abstract Context Individuals with type 1 diabetes (T1DM) have alterations in brain activity which have been postulated to contribute to the adverse neurocognitive consequences of T1DM; however, the impact of T1DM and hypoglycemic unawareness on the brain’s resting state activity remains unclear. Objective To determine whether individuals with T1DM and hypoglycemia unawareness (T1DM-Unaware) had changes in the brain resting state functional connectivity compared to healthy controls (HC) and those with T1DM and hypoglycemia awareness (T1DM-Aware). Design Observational study Setting Academic medical center Participants 27 individuals with T1DM and 12 healthy control volunteers participated in the study. Intervention All participants underwent BOLD resting state fMRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60mg/dl) clamp. Outcome Changes in resting state functional connectivity Results Using two separate methods of functional connectivity analysis, we identified distinct differences in the resting state brain responses to mild hypoglycemia amongst HC, T1DM-Aware and T1DM-Unaware participants, particularly in the angular gyrus, an integral component of the default mode network (DMN). Furthermore, changes in angular gyrus connectivity also correlated with greater symptoms of hypoglycemia (r = 0.461, P = 0.003) as well as higher scores of perceived stress (r = 0.531, P = 0.016). Conclusion These findings provide evidence that individuals with T1DM have changes in the brain’s resting state connectivity patterns, which may be further associated with differences in awareness to hypoglycemia. These changes in connectivity may be associated with alterations in functional outcomes amongst individuals with T1DM.


2019 ◽  
Vol 31 ◽  
pp. 101-105 ◽  
Author(s):  
Patricia Stefancin ◽  
Sindhuja T Govindarajan ◽  
Lauren Krupp ◽  
Leigh Charvet ◽  
Timothy Q Duong

Sign in / Sign up

Export Citation Format

Share Document