Thermal conduction modeling of composites by embedding technique

Author(s):  
Rafael Corrêa Salomão ◽  
Rogério Carrazedo

Composite materials are extremely important in several industrial areas and have been thoroughly used to solve many engineering problems. In more recent years, new numerical models and manufacturing processes made interest grow on those materials. This work contributes to the state of the art of composite materials modeling by proposing an embedding technique for thermal problems using the finite element method. The technique relies on rewriting the reinforcement finite element variables according to the composite matrix finite element form functions. By doing so, it is possible to embed the reinforcement element without increasing the total number of degrees of freedom. The embedding method is capable of modeling the phase’s orientation as well as it’s placement. It’s also possible to make use of nonlinear conductive parameters to model nonlinear thermal problems. Numerical examples are described to show the technique’s capability. The numerical results show good agreement with references, as well as reducing the total number of degrees of freedom and being able to model nonlinear material behavior. Such characteristics make the model suitable to perform more complex analysis such as reliability, optimization, multi-physics, among others.

2018 ◽  
Vol 3 (1) ◽  
pp. 13-20
Author(s):  
Dávid Huri

Automotive rubber products are subjected to large deformations during working conditions, they often contact with other parts and they show highly nonlinear material behavior. Using finite element software for complex analysis of rubber parts can be a good way, although it has to contain special modules. Different types of rubber materials require the curve fitting possibility and the wide range choice of the material models. It is also important to be able to describe the viscoelastic property and the hysteresis. The remeshing possibility can be a useful tool for large deformation and the working circumstances require the contact and self contact ability as well. This article compares some types of the finite element software available on the market based on the above mentioned features.


Author(s):  
Wen Zhang ◽  
Wenliang Wang ◽  
Hao Wang ◽  
Jiong Tang

A method for dynamic analysis of flexible bladed-disk/shaft coupled systems is presented in this paper. Being independant substructures first, the rigid-disk/shaft and each of the bladed-disk assemblies are analyzed separately in a centrifugal force field by means of the finite element method. Then through a modal synthesis approach the equation of motion for the integral system is derived. In the vibration analysis of the rotating bladed-disk substructure, the geometrically nonlinear deformation is taken into account and the rotationally periodic symmetry is utilized to condense the degrees of freedom into one sector. The final equation of motion for the coupled system involves the degrees of freedom of the shaft and those of only one sector of each of the bladed-disks, thereby reducing the computer storage. Some computational and experimental results are given.


1998 ◽  
Vol 120 (1) ◽  
pp. 106-113 ◽  
Author(s):  
T. Reinikainen ◽  
M. Poech ◽  
M. Krumm ◽  
J. Kivilahti

Solder alloys are commonly tested with shear tests to study their mechanical properties or low-cycle fatigue performance. In this work, the suitability of various shear tests for quantitative solder-joint testing is investigated by means of the finite element method. The stress state and stress distribution in the following well known geometries are studied: the double-lap test, the ring and plug test, the losipescu test, and two single-lap tests. A new test geometry, the grooved-lap test, is introduced and compared to the conventional tests. The results of simulations with an elastic material model in plane-strain indicate that considerable differences in the purity of the state of shear (rε = −ε1/ε3) as well as in the stress distribution in the joint exist among the shear tests. However, simulations with a nonlinear material model show that stress inhomogenities are smoothed by the plastic and creep deformation occurring in the joint. Optical measurements of the deformation of real single-lap and grooved-lap joints show that the single-lap joint rotates slightly during creep, whereas in the grooved-lap joint no rotation can be detected. This confirms the simulation results that in the single-lap test the initially nonuniform stress distribution changes during creep, and in the grooved-lap test the uniform stress distribution remains constant through the test.


1967 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
M J Iremonger ◽  
W G Wood

An investigation has been made into the suitability of the finite-element method for studying the stresses in composite materials and the case of a single broken fibre in a matrix has been examined. It has been found that high stress concentrations occur in the region of the fibre break which increase with decreasing end gap and would cause matrix yielding or fracture at comparatively low overall stresses. When the end gap is not void but filled with matrix much lower stress concentrations occur which, below a certain value of end gap, actually decrease as the gap is made smaller.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1030
Author(s):  
Gabriel Leonard Mitu ◽  
Eliza Chircan ◽  
Maria Luminita Scutaru ◽  
Sorin Vlase

The paper uses Kane’s formalism to study two degrees of freedom (DOF) mechanisms with elastic elements = employed in a wind water pump. This formalism represents an alternative, in our opinion, that is simpler and more economical to Lagrange’s equation, used mainly by researchers in this type of application. In the problems where the finite element method (FEM) is applied, Kane’s equations were not used at all. The automated computation causes it to be reconsidered in the case of mechanical systems with a high DOF. Analyzing the planar transmission mechanism, these equations were applied for the study of an elastic element. An analysis was then made of the results obtained for this type of water pump. The matrices coefficients of the obtained equations were symmetric or skew-symmetric.


2009 ◽  
Vol 424 ◽  
pp. 113-119 ◽  
Author(s):  
Jerome Muehlhause ◽  
Sven Gall ◽  
Sören Müller

Extrusion of composite materials can offer big advantages. In this work the manufacturing of a hybrid metal profile in a single production step was investigated. A porthole die was used, thus producing profiles with extrusion seams. Along the seams a material mix up was visible. The extrusion process was simulated with the Finite Element Method to investigate the material flow in die and welding chamber in order to understand the cause for the defects at the seams.


Author(s):  
Xiao-Yan Gong ◽  
Alan R. Pelton

Nitinol, an alloy of about 50% Ni and 50% Ti, is a very unique material. At constant temperature above its Austenite finish (Af) temperature, under uniaxial tensile test, the material is highly nonlinear and capable of large deformation to the ultimate strain on the order of 15%. This material behavior, known as superelasticity, along with its excellent biocompatibility and corrosion resistance, makes Nitinol a perfect material candidate for many medical device applications. However, the nonlinear material response also requires a specific material description to perform the stress analysis. The user developed material subroutine from HKS/West makes the simulation of the Nitinol devices possible. This article presents two case studies of the nonlinear finite element analysis using ABAQUS/Standard and the Nitinol UMAT.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Paulina Krolo ◽  
Davor Grandić ◽  
Mladen Bulić

The aim of this paper is the development of the two different numerical techniques for the preloading of bolts by the finite element method using the software Abaqus Standard. Furthermore, this paper gave detailed guidelines for modelling contact, method for solving the numerical error problems such as numerical singularity error and negative eigenvalues due to rigid body motion or the problem of the extensive elongation of bolts after pretension which is occurring during the analysis. The behaviour of bolted joints depending on the two different approaches of pretension was shown on the example of an extended end-plate bolted beam-to-column connection under the monotonic loading. The behaviour of beam-to-column connection was shown in the form and moment-rotation (M-ϕ) curves and validated by experimental test. Advantages and disadvantages of pretension techniques, as well as the speed of numerical models, were also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document