Information visualization on large, high-resolution displays: Issues, challenges, and opportunities

2011 ◽  
Vol 10 (4) ◽  
pp. 341-355 ◽  
Author(s):  
Christopher Andrews ◽  
Alex Endert ◽  
Beth Yost ◽  
Chris North

Larger, higher-resolution displays are becoming accessible to a greater number of users as display technologies decrease in cost and software for the displays improves. The additional pixels are especially useful for information visualization where scalability has typically been limited by the number of pixels available on a display. But how will visualizations for larger displays need to fundamentally differ from visualizations on desktop displays? Are the basic visualization design principles different? With this potentially new design paradigm comes questions such as whether the relative effectiveness of various graphical encodings are different on large displays, which visualizations and datasets benefit the most, and how interaction with visualizations on large, high-resolution displays will need to change. As we explore these possibilities, we shift away from the technical limitations of scalability imposed by traditional displays (e.g. number of pixels) to studying the human abilities that emerge when these limitations are removed. There is much potential for information visualizations to benefit from large, high-resolution displays, but this potential will only be realized through understanding the interaction between visualization design, perception, interaction techniques, and the display technology. In this paper we present critical design issues and outline some of the challenges and future opportunities for designing visualizations for large, high-resolution displays. We hope that these issues, challenges, and opportunities will provide guidance for future research in this area.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2157
Author(s):  
Matthew B. Wall ◽  
David Birch ◽  
May Y. Yong

Neuroimaging experiments can generate impressive volumes of data and many images of the results. This is particularly true of multi-modal imaging studies that use more than one imaging technique, or when imaging is combined with other assessments. A challenge for these studies is appropriate visualisation of results in order to drive insights and guide accurate interpretations. Next-generation visualisation technology therefore has much to offer the neuroimaging community. One example is the Imperial College London Data Observatory; a high-resolution (132 megapixel) arrangement of 64 monitors, arranged in a 313 degree arc, with a 6 metre diameter, powered by 32 rendering nodes. This system has the potential for high-resolution, large-scale display of disparate data types in a space designed to promote collaborative discussion by multiple researchers and/or clinicians. Opportunities for the use of the Data Observatory are discussed, with particular reference to applications in Multiple Sclerosis (MS) research and clinical practice. Technical issues and current work designed to optimise the use of the Data Observatory for neuroimaging are also discussed, as well as possible future research that could be enabled by the use of the system in combination with eye-tracking technology.


2019 ◽  
Author(s):  
Emily L. Dennis ◽  
Karen Caeyenberghs ◽  
Robert F. Asarnow ◽  
Talin Babikian ◽  
Brenda Bartnik-Olson ◽  
...  

Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population; however, research in this population lags behind research in adults. This may be due, in part, to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. Specific developmental issues also warrant attention in studies of children, and the ever-changing context of childhood and adolescence may require larger sample sizes than are commonly available to adequately address remaining questions related to TBI. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate-Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis. In this paper we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. We conclude with recommendations for future research in this field of study.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yuhang Yang ◽  
Zhiqiao Dong ◽  
Yuquan Meng ◽  
Chenhui Shao

High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Yuhao Zhou ◽  
Bowen Ji ◽  
Minghao Wang ◽  
Kai Zhang ◽  
Shuaiqi Huangfu ◽  
...  

Remarkable progress has been made in the high resolution, biocompatibility, durability and stretchability for the implantable brain-computer interface (BCI) in the last decades. Due to the inevitable damage of brain tissue caused by traditional rigid devices, the thin film devices are developing rapidly and attracting considerable attention, with continuous progress in flexible materials and non-silicon micro/nano fabrication methods. Therefore, it is necessary to systematically summarize the recent development of implantable thin film devices for acquiring brain information. This brief review subdivides the flexible thin film devices into the following four categories: planar, open-mesh, probe, and micro-wire layouts. In addition, an overview of the fabrication approaches is also presented. Traditional lithography and state-of-the-art processing methods are discussed for the key issue of high-resolution. Special substrates and interconnects are also highlighted with varied materials and fabrication routines. In conclusion, a discussion of the remaining obstacles and directions for future research is provided.


1993 ◽  
Vol T47 ◽  
pp. 149-156 ◽  
Author(s):  
David S Leckrone ◽  
Sveneric Johansson ◽  
Glenn M Wahlgren ◽  
Saul J Adelman

2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Mokter Hossain ◽  
Gospel Onyema Oparaocha

AbstractCrowdfunding is an emerging phenomenon that has attracted significant interest from scholars and practitioners alike, mainly due to its appeal as an alternative source of funding. As crowdfunding has grown exponentially, so have the associated challenges and opportunities. In this conceptual paper, we define crowdfunding; discuss its characteristics, related terminologies, key elements and ethical issues. We also propose a typology for crowdfunding and indicate various issues associated with it. The final section includes the implications of this study and suggestions for future research. This paper aims to inspire a scholarly debate and further develop the theoretical foundation of the crowdfunding literature. This may also prompt practitioners to take note of the emerging concerns as the crowdfunding phenomenon is transforming from a marginal to a mainstream discipline.


2020 ◽  
Vol 16 ◽  
pp. 21-37
Author(s):  
Judith Anthony

This article provides an overview and critical analysis of The English Language Learning Progressions (ELLP) (Ministry of Education, 2008). Identifying main themes through critical policy analysis, this review seeks to place ELLP in context through a comparison with The English Language Learning Framework: Draft (Ministry of Education, 2005) and English Language Learning Progressions (ELLP ) Pathway Years 1–8 (Ministry of Education, 2020a). Within this review, the structure of ELLP is explored along with key ideas and claims. It is argued that there are both challenges and opportunities in ELLP. Finally, the key issues are summarised and suggestions are made for future research.


2017 ◽  
Vol 03 (02) ◽  
pp. E52-E59 ◽  
Author(s):  
Sikolia Wanyonyi ◽  
Charles Mariara ◽  
Sudhir Vinayak ◽  
William Stones

AbstractThe potential benefits of obstetric ultrasound have yet to be fully realized in sub-Saharan Africa (SSA), despite the region bearing the greatest burden of poor perinatal outcomes. We reviewed the literature for challenges and opportunities of universal access to obstetric ultrasound and explored what is needed to make such access an integral component of maternity care in order to address the massive burden of perinatal morbidity and mortality in SSA. Original peer-reviewed literature was searched in various electronic databases using a ‘realist’ approach. While the available data were inconclusive, they identify many opportunities for potential future research on the subject within the region that can help build a strong case to justify the provision of universal access to ultrasound as an integral component of comprehensive antenatal care.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6427
Author(s):  
Haoyu Niu ◽  
Derek Hollenbeck ◽  
Tiebiao Zhao ◽  
Dong Wang ◽  
YangQuan Chen

Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks.


2011 ◽  
Vol 181-182 ◽  
pp. 233-236 ◽  
Author(s):  
Dennis Cheng ◽  
Dixon Fung ◽  
Karl Guttag

The progress in digital high resolution, small pixel liquid crystal on silicon (LCOS) microdisplays will be discussed and how it will lead to HD displays in very small form factors. The first generation of this technology is enabling very small yet high resolution projection engines devices that can be embedded in cell phones, cameras, head-mount displays, and set-top boxes and the next generation will bring HD resolution. As lasers become more affordable we see this LCOS display technology fundamentally changing the power consumption, cost, and size of pico-projectors and other display devices. One of the most interesting conclusions is that by using LCOS technology in combination with lasers, it should soon be possible to build an “ultra-green” television that would consume less than 1/8th the power of equivalent size LCD flat panel TV.


Sign in / Sign up

Export Citation Format

Share Document