Studies on Thermo-Mechanical Properties of Post-Consumer High Impact Polystyrene in Five Reprocessing Steps

2002 ◽  
Vol 18 (2) ◽  
pp. 99-110 ◽  
Author(s):  
R.C. Santana ◽  
Sati Manrich

This study consisted of an investigation of the thermo-mechanical properties of post-consumer high impact polystyrene (HIPS) through five consecutive injection moulding steps to simulating the recycling cycles. The selectively collected HIPS residue was ground, washed only in water, dried, agglutinated and then moulded as a set of mechanical test specimens before the first step. The melt flow index (MFI), glass transition temperature (Tg), complex viscosity (η*), deflection temperature under flexural load (HDT), tensile, flexural and impact strength tests were determined at each reprocessing cycles. The results revealed that the degradative effect of consecutive recycling on the material's thermal properties was low and may be considered negligible. After five reprocessing cycles, the results showed an ∼8°C decrease of Tg in DSC, an increase of MFI, a decrease in viscosity and a slight decrease of HDT, which could be attributed to chain scission caused by consecutive cycles of exposure to shear stresses and high temperature. The material became slightly more rigid and fragile, as indicated by the mechanical tests.

2021 ◽  
pp. 096739112110468
Author(s):  
Nour El Houda Aouadi ◽  
Abdelhak Hellati ◽  
Nizamudeen Cherupurakal ◽  
Melia Guessoum ◽  
Abdel-Hamid I Mourad

This work consists of preparation and characterization of composites produced from thermoplastic starch (TPS) and high impact polystyrene (HIPS). Due to the immiscibility of the system (TPS/HIPS), it was necessary to incorporate concentrations of 1, 2 and 3% of an organophilic montmorillonite (MMT) to improve the properties of the mixtures, in particular their rigidity. The composites thus prepared were characterized using XRD, FTIR, mechanical test, degree of swelling in water and biodegradability. The results show that the addition of MMT improves the mechanical properties of the mixtures such as the tensile strength and the Young’s modulus by 5% and 10%, respectively. In contrast, the resilience of the system has significantly decreased. Moreover, for 3% of MMT, the composites biodegradability is enhanced by 15% when compared to the TPS/HIPS mixture without MMT.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Carmen Albano ◽  
Rebeca Poleo ◽  
Jacobo Reyes ◽  
Miren Ichazo ◽  
Jeanette González ◽  
...  

Abstract This work is aimed at analyzing by means of simple mathematical models the effect of different integral doses of γ-irradiation on the mechanical properties and concentration of radicals of the blends of polypropylene (PP) + wood flour and PP + sisal fibre. The analysis of the results permits inferring that the kinetic behaviour of the mechanical properties and the concentration of radicals at low integral doses (≤ 10 KGy) are indicative of a complex degradation process, implying the possibility of cross-linking and chain scission reactions both in the polymer as well as in the filler. Consequently, it can be concluded that cross-linking reactions are predominant. The behaviour observed at higher irradiation doses means that both reactions (cross-linking and chain scission) occur, the breaking reactions being the prevailing ones. This study of the kinetic analysis of the tensile properties is based on the behaviour detected for the melt-flow index.


2009 ◽  
Vol 18 (1) ◽  
pp. 096369350901800 ◽  
Author(s):  
J. P. Siregar ◽  
S. M. Sapuan ◽  
Ab. Rahman ◽  
M. Zaki ◽  
H. M. D. Khairul Zaman

The aim of this study to investigate the physical properties of short pineapple leaf fibre (SPALF) reinforced high impact polystyrene (HIPS) composites. Three different sizes of the fibre were used in this study which was 10-40mesh, 40-60mesh and 60-80mesh. A five different fibre contents were used in this study which was 10%, 20%, 30%, 40%, and 50%. The fabricated SPALF/HIPS composites were used melt mixing and compression moulding. The physical properties of SPALF/HIPS composites such as water absorption, thickness swelling, melt flow index (MFI), and density board of composites were studied. The result showed that the addition of the SPALF was decreased the physical properties compare to pure HIPS (0% SPALF).


2018 ◽  
Vol 34 (3) ◽  
pp. 117-127 ◽  
Author(s):  
Felipe Bier de Mello ◽  
Sonia Marli Bohrz Nachtigall ◽  
Cleia de Andrade Salles ◽  
Sandro Campos Amico

This research work focused on polypropylene/high-impact polystyrene polymer blends. Since this blend (80/20 in weight) was incompatible, styrene–ethylene–butylene–styrene (SEBS) block copolymer, styrene–butadiene–styrene (SBS), and ethylene vinyl acetate were tested as compatibilizers (2.5 or 7.5 wt% in relation to blend). After blending via extrusion, the compositions were compression molded and their mechanical (tensile and impact), morphological (scanning electron microscopy), and rheological (melt flow index and viscosity) properties were evaluated. Blends containing SBS and 7.5 wt% of SEBS showed a positive effect regarding impact strength, although with a decrease in Young’s modulus and tensile strength. Rheological characteristics were also affected by the compatibilizers.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Tuffaha Fathe Salem ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

AbstractChopped jute fiber (JF) surfaces were modified using alkaline, silane and eco-grade epoxy resin. Surface characteristics of jute fibers were confirmed by FTIR and EDX analyses. JF filled polyurethane elastomer (TPU) composites were prepared via extrusion process. The effect of surface modifications of JF on mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of TPU-based eco-composites were investigated by tensile and hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test, water absorption measurements and scanning electron microscopy (SEM) techniques, respectively. Mechanical test results showed that silane and epoxy treated JF additions led to increase in tensile strength, modulus and hardness of TPU. Glass transition temperature (Tg) of TPU rose up to higher values after JF inclusions regardless of treatment type. Si-JF filled TPU exhibited the lowest water absorption among composites. Surface treated JFs displayed homogeneous dispersion into TPU and their surface were covered by TPU according to SEM micro-photographs.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2134
Author(s):  
Sandra Paszkiewicz ◽  
Izabela Irska ◽  
Iman Taraghi ◽  
Elżbieta Piesowicz ◽  
Jakub Sieminski ◽  
...  

The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percentages of HNT and ATH-sil nanoparticles, as well as the hybrid system of those nanofillers, were melt mixed with the polymer blend (reference sample) using a twin-screw extruder. The morphology of the nanoparticles and polymer compositions was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanical properties, hardness, water absorption, and melt flow index (MFI) of the compositions were assessed. The tensile strength increases as a function of the amount of HNT nanofiller; however, the elongation at break decreases. In the case of the hybrid system of nanofillers, the compositions showed superior mechanical properties. The thermal properties of the reference sample and those of the corresponding sample with nanofiller blends were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Two peaks were observed in the melting and crystallization temperatures. This shows that the EVA/LDPE is an immiscible polymer blend. The thermal stability of the blends was improved by the presence of HNTs and ATH-sil nanoparticles. Thermal degradation temperatures were shifted to higher values by the presence of hybrid nanofillers. Finally, the flammability of the compositions was assessed. Flammability as reflected by the limiting oxygen index (OI) was increased by the presence of HNT and ATH-sil nanofiller and a hybrid system of the nanoparticles.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


2013 ◽  
Vol 701 ◽  
pp. 202-206
Author(s):  
Ahmad Aroziki Abdul Aziz ◽  
Sakinah Mohd Alauddin ◽  
Ruzitah Mohd Salleh ◽  
Mohammed Iqbal Shueb

Effect of nanoMagnesium Hydroxide (MH) nloading amount to the mechanical and physical properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nanocomposite has been described and investigated in this paper. The tensile strength results show that increased amount of nanofiller will decrease and deteriorate the mechanical properties. The elongation at break decreased continuously with increasing loading of nanofiller. Generally, mechanical properties become poorer as loading amount increase. Melt Flow Index values for physical properties also provide same trend as mechanical properties results. Increase filler amount reduced MFI values whereby increased resistance to the flow.


Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 58
Author(s):  
Patrizio Tratzi ◽  
Chiara Giuliani ◽  
Marco Torre ◽  
Laura Tomassetti ◽  
Roberto Petrucci ◽  
...  

The recycling of plastic waste is undergoing fast growth due to environmental, health and economic issues, and several blends of post-consumer and post-industrial polymeric materials have been characterized in recent years. However, most of these researches have focused on plastic containers and packaging, neglecting hard plastic waste. This study provides the first experimental characterization of different blends of hard plastic waste and virgin polypropylene in terms of melt index, differential scan calorimetry (DSC), thermogravimetric analysis (TGA), mechanical properties (tensile, impact and Shore hardness) and Vicat softening test. Compared to blends based on packaging plastic waste, significant differences were observed in terms of melt flow index (about 10 points higher for hard plastic waste). Mechanical properties, in particular yield strain, were instead quite similar (between 5 and 9%), despite a higher standard deviation being observed, up to 10%, probably due to incomplete homogenization. Results demonstrate that these worse performances could be mainly attributed to the presence of different additives, as well as to the presence of impurities or traces of other polymers, other than incomplete homogenization. On the other hand, acceptable results were obtained for selected blends; the optimal blending ratio was identified as 78% post-consumer waste and 22% post-industrial waste, meeting the requirement for injection molding and thermoforming.


2008 ◽  
Vol 47-50 ◽  
pp. 1245-1249
Author(s):  
Zhong Wei Wu ◽  
Qing Jie Jiao ◽  
Chong Guang Zang ◽  
Hui Lan

PPO was a better intensifier and charred material for High-impact polystyrene (HIPS), it could make HIPS achieve UL94V-0 with APP, MC, RDP. Especially, RDP not only improved the flame-retarded property but also controlled the hole producing, and had the best consistent with matrix which could improve the mechanical properties. SBS and SEBS were better consistent with matrix, especially SEBS was tiny granule, which could be dispersed in matrix easily. The properties of SEBS toughened the non-halogen flame-retarded HIPS was followed: tensile strength: 18.83MPa; izod notch impact strength: 15.7kJ/m2; UL94V-0.


Sign in / Sign up

Export Citation Format

Share Document