scholarly journals Synthesis and electrical properties of conductive polyaniline/ SWCNT nanocomposites

2019 ◽  
Vol 15 (34) ◽  
pp. 106-113
Author(s):  
Estabraq T. Abdulla

The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite have been measured in frequency range (50Hz - 600KHz) and in the temperature range from (30 to 160K). The results show the electrical conductivity of the nanocomposite is higher than pure PANI.

2020 ◽  
Vol 982 ◽  
pp. 195-200
Author(s):  
Abdullah Al Mamun ◽  
Okan Sirin

Nanotechnology has contributed significantly to different subfields of the construction industry, including asphalt pavement engineering. The improved properties and new functionalities of the nanomaterials have provided different desired properties of asphalt. In this study, the effectiveness of multi-walled carbon nanotubes (MWCNT) in resisting the oxidation of polymer-modified asphalt was measured. A total of three different percentages (0.5%, 1%, and 1.5%) of MWCNT were used to modify the Styrene-Butadiene (SB) and styrene–butadiene–styrene (SBS) modified asphalt (4% and 5%). The laboratory oxidized asphalt samples were evaluated by an atomic force microscopy machine. The oxidation of the polymer-MWCNT modified asphalt is measured by simulating the existing functional group of the asphalt and as a function of the adhesive force. It is observed that the use of MWCNT in SB and SBS can increase the resistance to oxidation.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Ahmed M. El-Baz ◽  
Rasha A. Mosbah ◽  
Reham M. Goda ◽  
Basem Mansour ◽  
Taranum Sultana ◽  
...  

Candida albicans is the causative agent of fatal systemic candidiasis. Due to limitations of antifungals, new drugs are needed. The anti-virulence effect of plant essential oils (EOs) was evaluated against clinical C. albicans isolates including cinnamon, clove, jasmine and rosemary oils. Biofilm, phospholipase and hemolysin were assessed phenotypically. EOs were evaluated for their anti-virulence activity using phenotypic methods as well as scanning electron microscopy (SEM) and atomic force microscopy (AFM). Among the C. albicans isolates, biofilm, phospholipase and hemolysins were detected in 40.4, 86.5 and 78.8% of isolates, respectively. Jasmine oil showed the highest anti-biofilm activity followed by cinnamon, clove and rosemary oils. SEM and AFM analysis showed reduced adherence and roughness in the presence of EOs. For phospholipase, rosemary oil was the most inhibitory, followed by jasmine, cinnamon and clove oils, and for hemolysins, cinnamon had the highest inhibition followed by jasmine, rosemary and clove oils. A molecular docking study revealed major EO constituents as promising inhibitors of the Als3 adhesive protein, with the highest binding for eugenol, followed by 1,8-cineole, 2-phenylthiolane and cinnamaldehyde. In conclusion, EOs have a promising inhibitory impact on Candida biofilm, phospholipase and hemolysin production, hence EOs could be used as potential antifungals that impact virulence factors.


2013 ◽  
Vol 1491 ◽  
Author(s):  
Jayme Keist ◽  
Christine Orme ◽  
Frances Ross ◽  
Dan Steingart ◽  
Paul Wright ◽  
...  

ABSTRACTThis investigation describes preliminary results of in-situ analysis of zinc deposition within an ionic liquid electrolyte utilizing electrochemical atomic force microscopy (EC AFM). From the AFM analysis, the morphology of the zinc deposition was analyzed by quantifying the surface roughness using height-height correlation functions. These results will be used to analyze the scattering data obtained from zinc deposition analysis utilizing an electrochemical ultra-small angle x-ray scattering (EC USAXS). The goal of this research is to link the early nucleation and growth behavior to the formation of detrimental morphologies.


2009 ◽  
Vol 13 (07) ◽  
pp. 774-778 ◽  
Author(s):  
Byung-Soon Kim ◽  
Young-A Son

In this study, self-assembled alternating film using poly(diallyldimethylammonium chloride) (PDDAC) and meso-tetrakis(4-carboxyphenyl)porphyrin (MTCP) was prepared as a multilayer deposition on glass substrate. This preparation technique for dye deposition may provide new feasibilities to achieve the manufacture of ultrathin films for nanotechnology application. The deposition films were characterized by UV-vis spectrophotometer and Atomic Force Microscopy (AFM) analysis. The results of UV-vis spectra showed that the absorbance characteristic of the multilayer films linearly increased with an increased number of PDDAC and MTCP bilayers. AFM analysis showed the film surface was relatively uniform and the progressive growth of layers was determined.


2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Jianhui Wu ◽  
Cailian Du ◽  
Jieming Zhang ◽  
Bo Yang ◽  
Andrew G. S. Cuthbertson ◽  
...  

Nanotechnology is increasingly being used in areas of pesticide production and pest management. This study reports the isolation and virulence of a new Metarhizium anisopliae isolate SM036, along with the synthesis and characterization of M. anisopliae–chitosan nanoparticles followed by studies on the efficacy of nanoparticles against Plutella xylostella. The newly identified strain proved pathogenic to P. xylostella under laboratory conditions. The characterization of M. anisopliae–chitosan nanoparticles through different analytical techniques showed the successful synthesis of nanoparticles. SEM and HRTEM images confirmed the synthesis of spherical-shaped nanoparticles; X-ray diffractogram showed strong peaks between 2θ values of 16–30°; and atomic force microscopy (AFM) analysis revealed a particle size of 75.83 nm for M. anisopliae–chitosan nanoparticles, respectively. The bioassay studies demonstrated that different concentrations of M. anisopliae–chitosan nanoparticles were highly effective against second instar P. xylostella under laboratory and semi-field conditions. These findings suggest that M. anisopliae–chitosan nanoparticles can potentially be used in biorational P. xylostella management programs.


2015 ◽  
Vol 821-823 ◽  
pp. 929-932 ◽  
Author(s):  
Filippo Giannazzo ◽  
Stefan Hertel ◽  
Andreas Albert ◽  
Gabriele Fisichella ◽  
Antonino La Magna ◽  
...  

The electrical properties of the interface between quasi free standing bilayer graphene (QFBLG) and SiC(0001) have been investigated by nanoscale resolution current measurements using conductive atomic force microscopy (CAFM). I-V analyses were carried out on Au-capped QFBLG contacts with different sizes (from 200 down to 0.5 μm) fabricated on SiC samples with different miscut angles (from on-axis to 3.5° off-axis). The extracted QFBLG/SiC Schottky barrier height (SBH) was found to depend on the contact size. SBH values ∼0.9-1 eV were obtained for large contacts, whereas a gradual increase was observed below a critical (micrometer scale) contact size (depending on the SiC miscut angle) up to values approaching ∼1.5 eV. Nanoscale resolution current mapping on bare QFLBG contacts revealed that SiC step edges and facets represent preferential current paths causing the effective SBH lowering for larger contacts. The reduced barrier height in these regions can be explained in terms of a reduced doping of QFBLG from SiC substrate at (11-20) step edges with respect to the p-type doping on the (0001) terraces.


2016 ◽  
Vol 689 ◽  
pp. 55-59
Author(s):  
Serge Zhuiykov

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nanoscale using energy dispersive X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.


Sign in / Sign up

Export Citation Format

Share Document